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The main LHC results so far

® A robust exclusion interval for the SM Higgs.
Only a narrow window below 600 GeV: 115.5-127 GeV.

K. Jacobs
Plus some indication for m, ~ 125 GeV C. Paus

® No evidence of new physics, althouh a big chunk of new

territory has been explored P. Sphicas

® Important results on B and D decays from LHCb
[e.g. B,->)/W0,B.> UL, .... CP viol in D decay]
» T. Nakada




The 95% exclusion intervals for the light Higgs
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neglects correlations
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A light SM Higgs can only
be in 115.5-127 GeV range
in agreement with EW tests
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Some “excess” was reported in the allowed m, window

Is this the Higgs signal?

We hope yes, but the present evidence could still evaporate
with more statistics

We need to wait for the 2012 run

But, assuming that the excess is the first manifestation
of a signal, it is important to discuss the implications

Many papers on the ArXiv after Dec. 13th
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Observed excess over SM for m, ~ 126 GeV in:

H->vy (2.80), H->ZZ*->4[* (2.106), H->WW*-> |vlv (1.40).

Combined: 3.60 (but with look-elsewhere-effect 2.30)

& The most obvious “elsewhere” is CMIS =~ ===k



Also in CMS there is an excess, but smaller (2.6 o)
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% probability per 0.1 GeV bin
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Do the masses really coincide?

all data except CMS
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Peaks come and go!
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A moderate enhancement of the yy rate may be indicated
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The SM Higgs is close to be observed or excluded!

Either the SM Higgs is very light (115.5 - 127 GeV)
or rather heavy (i.e. > 600 GeV)

The range m, = 115.5 - 127 GeV is in agreement
with precision tests, compatible with the SM and also with
the SUSY extensions of the SM

my ~125 GeV is what you expect from a direct interpretation
of EW precision tests: no fancy conspiracy with new physics
to fake a light Higgs while the real one is heavy

my, > 600 GeV would point to the conspiracy alternative

<



Theoretical bounds on the SM Higgs mass
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Upper limit: No Landau
pole up to A 500
Lower limit: Vacuum
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If the SM would be valid up to M, My, with a stable
vacuum then my, would be limited in a small range

E depends on m,and o, —> 130 GeV < my < 180 GeV >



But metastability (with sufficiently long lifetime) is enough!

Higgs quartic coupling A( )
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In the absence of new physics, for m, ~ 125 GeV,
the Universe becomes metastable at a scale A ~ 1010 GeV

C And the SM remains viable up to M, (early universe implications)



180

Pole top mass m; in GeV
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Higgs mass my, in GeV
Note that A=0 at the Planck scale (and no physics
in between) implies m, ~ 130 GeV depending on m,and o,

my > 130GeV + 1.8 GeV (m* —1r2 GEV) —0.5GeV (“S(Mz) — 01184

0.9GeV 0.0007
@ not far from 125 GeV

) + 3 GeV

Elias-Miro’ et al, Holthausen et al, Wetterich ‘11



The Standard Model works very well

So, why not find the Higgs and declare
particle physics solved?

Because of both:

Conceptual problems

* Quantum gravity
* The hierarchy problem
 The flavour puzzle

Some of these problems
point at new physics

at the weak scale: eg

and experimental clues: Hierarchy
* Neutrino masses Dark matter (perhaps)
« Coupling unification
 Dark matter insert here
« Baryogenesis your
- Vacuum energy preferred

« » some experimental anomalies: (g-2),, Ahints



An enlarged SM (to include RH Vv's and no new physics)
remains an (enormously fine tuned) option

A light Higgs
SO(10) non SUSY GUT

SO(10) breaking down to SU(4)xSU(2),xSU(2)g
at an intermediate scale (1011-12)

Majorana neutrinos and see-saw (-> 0v[33)

Axions as dark matter
Baryogenesis thru leptogenesis

(but: (g-2), and other present deviations
from SM should be disposed of)



Some amount of new physics could bring EW precision tests
better into focus
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Muon g-2

a, is a plausible
location for a

new physics signall!!

eg could be light SUSY
(now tension with LHC)
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Some NP hints from accelerator experiments

(8-2), Brookhaven ~30

ttber FB asymmetry Tevatron (mostly CDF) ~3o at large My

Dimuon charge asymmetry DO ~3.90
Wijj excess at M;~ 144 GeV CDF ~3.20

only candidate to open prod. of NP not confirmed by DO, LHC
B.->J/yo Tevatron, LHCb  ~went away
B -> 1TV BaBar, Belle ~2.50



A non-LHC very important result

MEG new limit on Br(lL->e y) < 2.4 1012
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WMAP
/

(Arnzatm)]/2

Upper limit on myv

(A mzsol) 1/2

KamLAND

Neutrino masses
are really special!
@ rnt/(Arnzatm)1/2"’-IO12

Massless V's?

® no Vg

* L conserved
Small v masses?

* vy very heavy

* L not conserved

Very likely:

V’'s are special as they
are Majorana fermions




Are neutrinos Dirac or Majorana fermions?

Under charge conjugation C: particle <--> antiparticle

For bosons there are many cases of particles that coincide
(up to a phase) with their antiparticle: T°, p°, ®,7, Z°

A fermion that coincides with its antiparticle is
called a Majorana fermion. Are there Majorana fermions?

Neutrinos are probably Majorana fermions

Of all fundamental fermions only Vv's are neutral

If lepton number L conservation is violated then
no conserved charge distinguishes neutrinos from

antineutrinos
(v,
bbbt

uuuny, CCCVM
ddde SSSU



A very natural and appealing explanation:

v's are nearly massless because they are Majorana particles
and get masses through L non conserving interactions
suppressed by a large scale M ~ Mg, r

oo m? m:<m, ~ v ~ 200 GeV
v M M: scale of L non cons.

m,~(AmZ2_ )'/2 ~ 0.05 eV
m ~ v ~ 200 GeV

@ M~ 10'-10"> GeV

Neutrino masses are a probe of physics at M ;!




How to prove that v’'s are Majorana fermions?

All we know from experiment on vV masses strongly indicates

that v's are Majorana particles and that L is not conserved
(but a direct proof still does not exist).

V=V OvBp = dd -> uue-e

™ Y :
d S ;"n .ﬂ"ﬂ"k .-"Iﬁl'& .-"Ill I"uf ) o
\\ W \ /
u

Detection of OvBB (neutrinoless double beta decay)

would be a proof of L non conservation (AL=2).
Thus a big effort is devoted to improving present limits
and possibly to find a signal.

@Heidelberg-Moscow, Cuoricino-Cuore, GERDA, eeeee



Baryogenesis by decay of heavy Majorana v's

BG via Leptogenesis near the GUT scale

T~ 101283 QGeV (after inflation) Buchmuller,Yanagida,
Plumacher, Ellis, Lola,

Only survives if A(B-L) is not zero Giudice et al, Fujii et al
(otherwise is washed out at T, by instantons)

Main candidate: decay of lightest v, (M~1012 GeV)

L non conserv. in Vg out-of-equilibrium decay:
B-L excess survives at T, and gives the obs. B asymmetry.

Quantitative studies confirm that the range of m;from

voscill's is compatible with BG via (thermal) LG

In particular the bound | ;
was derived for hierarchy m;<107" eV

_ Buchmuller, Di Bari, Plumacher;
Can be relaxed for degenerate neutrinos Giudice et al: Pilaftsis et al:

S@Dfully compatible with oscill'n data!! Hambye et al



Dark Matter Most of the Universe is not made up of
atoms: Q. .~1, Q ~0.045, Q_~0.27

WMAP, SDSS, Most is Dark Matter and Dark Energy

2dFGRS....

Most Dark Matter is Cold (non relativistic at freeze out)
Significant Hot Dark matter is disfavoured

Neutrinos are not much cosmo-relevant: Q< 0.015

SUSY has excellent DM candidates: eg Neutralinos (--> LHC)
Also Axions are still viable (introduced to solve strong CPV)
(in @ mass window around m ~104eV and f, ~ 10"" GeV
but these values are simply a-posteriori)

Identification of Dark Matter is a task of enormous
importance for particle physics and cosmology

@ LHC? E



LHC has good chances because it can reach any kind of WIMP:

WIMP: Weakly Interacting Massive Particle
with m ~ 10'-103 GeV

For WIMP’s in thermal equilibrium after inflation the density is:

T3 0.1 pb - ¢

ﬂfglilﬂ‘x‘l'i}:}  {oqv)

Slx_h‘? ~ const. -

can work for typical weak cross-sections!!!

This “coincidence” is a good indication in favour of a
WIMP explanation of Dark Matter

<



Strong competition from underground labs
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The “little hierarchy” problem

e.g. the top loop (the most pressing): m, 2=m2,_ +8m, 2
3G
F

2 2
_O_ —p ammfﬂp Sl —m, 2A ~(0r.2ﬂ)
This hierarchy problem demands
A~0o(1TeV)

new physics near the weak scale

A: scale of new physics beyond the SM

« A>>m,: the SM is so good at LEP
« A~ few times G1/2 ~ o(1TeV) for a

natural explanation of m. or m
Barbieri, Strumla P h W

X The LEP Paradox: m;, light, new physics must be close but its
effects were not visible at LEP2

@ The B-factory Paradox: and not visible in flavour physics



Precision Flavour Physics

Another area where the SM is good, too good.....
—» Nakada

With new physics at ~ TeV one would expect
the SM suppression of FCNC and the CKM
mechanism for CP violation to be sizably modified.

But this is not the case

an intriguing mystery and a major challenge for models of
new physics

<



While it is a theorem that at the EW scale there must be the
Higgs (one or more) or some other new physics

(e.g. new vector bosons) because

otherwise there are unitarity violations at a few TeV

On the other hand the hierarchy problem is an issue
based on naturalness (the request of avoiding enormous
unjustified, unnecessary fine tuning in the theory).

Given the stubborn refuse of the SM to step aside, and the
terrible unexplained naturalness problem of the

cosmological constant, many people have turned to the
anthropic philosophy

Still, one thing is the cosmological constant and another
the SM (where all is very explicit and in front of us and
D many ways out are known)



Solutions to the hierarchy problem
® Supersymmetry: boson-fermion symm.

The most ambitious and widely accepted
Simplest versions now marginal
Plenty of viable alternatives

® Strong EWSB: Technicolor

Strongly disfavoured by LEP. Coming back in new forms

Composite Higgs
Higgs as PG Boson, Little Higgs models......

® Extra spacetime dim’s that somehow “bring” My down to
o(1TeV) [large ED, warped ED, .....]. Holographic composite H

Exciting. Many facets. Rich potentiality. No baseline model emerged so far

® Ignore the problem: invoke the anthropic principle
& Extreme, but not excluded by the data



A striking result of the 2011 LHC run (> 1 fb'7)
Is that the new physics is pushed further away

Examples:

sequential W': m, > 2.3 TeV
sequential Z':m, > 1.9 TeV
axi-gluon: 2.5-3.2 TeV
gluino: my > ~ 0.5 -1 TeV

Many generic signatures searched.
Not a single significant hint of new physics
found

But only ~ 20-25% of the 2011 statistics has been
analysed



Events

Di-lepton Channel

Sequential SM:

10 ATLAS - ;ID;Ea 2011 : o
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Di-photon Channel RS graviton (k/MPI =0.1):
m(G) > 1.7 TeV at 95% C.L.
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Wo->1v Sequential SM:

m(W') > 2.3 TeV at 95% C.L.

a7 ! ool Dlzm :
= ATLAS & Lala 2011
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Dijet

Model 95% CL Limits (TeV)

ATL-CONF-2011-095 Expcc[gd Observed
Excited Quark g~ 2.77 2.91
Axigluon 3.02 3.21
Color Octet Scalar 1.71 1.91

Model Excluded Mass (TeV)

CMS arXiv.1107.4771| Observed | Expected
String Resonances 4.00 3.90
Es Diquarks 3.52 3.28
Excited Quarks 2.49 2.68
Axigluons/Colorons 2.47 2.66
W' Bosons 1.51 1.40

<

—

Cross Sectionx B x A (pb)

10*

_I"|-L|||||
1

|-1III|IIII‘1IIII|IIIIIIIII|I

—=— Quark-Gluon

| k! =. String Resonance _|
=== Exgited Quark
AxigluoniColoron
— E; Diquark —]
- L e W -
- 1 F— zl -
B " RS Gravilon 7]
_ CMS (1.0 fb™") -
. Ws=T TeV " i
i < 2.5, jAn| < 1.3 % i
95% CL Upper Limit i kY
— == Gluon-Gluon e

=== Quark-Quark

1000 1500 2000 2500 3000 3500 4000
Resonance Mass (GeV)



SUSY: boson fermion symmetry

3G

F 2.2 2

top = ——szﬁ ~—0.2A)
Zﬁ:rc

In broken SUSY A2 is replaced by (m,,%-m:?>)logA

m,>114.4 GeV, m, >100 GeV, EW precision tests,
success of CKM, absence of FCNC, all together,
iImpose sizable Fine Tuning (FT) particularly on
minimal realizations (MSSM, CMSSM...).

The hierarchy problem: E-mi

Yet SUSY is a completely specified, consistent, computable
model, perturbative up to My, quantitatively in
agreement with coupling unification (GUT's)

(uniqgue among NP models)

and has a good DM candidate: the neutralino

(actually more than one).

@@ Remains the reference model for NP



Beyond the SM SUSY is unique in providing a perturbative
theory up to the GUT/Planck scale

2 4 6 8 10 12 14 16 18 > 4 6 8 10 12 14 16 16
Log,.(Q/1 GeV) Log,,(Q1 GeV)
Other BSM models (little Higgs, composite Higgs, Higgsless....)

all become strongly interacting and non perturbative
@ at a multi-TeV scale



Jets + missing E CMSSM (degenerate s-quarks)

Squark-gluino-neutralino model (m _ =0 GeV)
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The general MSSM has > 100 parameters

Simplified versions with a drastic reduction of parameters
are used for practical reasons, e.g.

CMSSM, mSUGRA : universal gaugino and scalar soft terms
at GUT scale m, ,,, mg, A, tgB, sign(u)

NUHM1,2: different than m, masses for H, H; (1 or 2 masses)

It is only these oversimplified models that are now cornered

<



Impact of m,; ~ 125 GeV on SUSY models

Simplest models with gauge mediation are disfavoured
(predict my, too light)

Djouadi et al; Draper et al, ‘11

some versions, eg gauge mediation with extra vector like matter,
do work
Endo et al ‘11

Anomaly mediation is also generically in trouble

Gravity mediation is better but CMSSM, mSUGRA, NUHM1,2
need squarks heavy, A, large and lead to tension with g-2
(that wants light SUSY) and b->sy

Akura et al; Baer et al; Battaglia et al; Buchmuller et al,
Kadastik et al; Strege et al; ‘11



maximal top mixing is required Hall et al “11

MSSM Higgs Mass
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Arbey et al 11
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M,=400 GeV, M¢ =1 TeV
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sSuUsY

NUHM2: p >0, my, = 12511 GeV, m,=173.3 GeV

Baer et al ‘11
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Buchmuller et al ‘11 2011
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Input data for fits of CMSSM, NUHMI1...... include

® The EW precision tests
® Muon g-2
® Flavour precision observables

® Dark Matter

® Higgs mass constraints and LHC



SUSY
With new data ever increasing fine tuning

One must go to SUSY beyond the CMSSM, mSUGRA, NUHM1,2

There is still room for more sophisticated versions

* Heavy first 2 generations
* NMSSM

* A SUSY

* Split SUSY

* Large scale SUSY



Beyond the CMSSM, mSugra, NUHM1,2

Heavy 1st, 2nd generations Barbieri

A

Dimopoulos, Giudice 1995
- Pomarol, Tommasini 1995
@-- —— j?' B, Dvali, Hall 1995
— J1.2 Cohen, Kaplan, Nelson 1996

1 TeV g

500 Gev — lighter gauginos,

7 £1,2,0] e
— " g-2 can be rescued
4 —nh —

Qs Ht



For example, may be gluinos decay into 3-gen squarks
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An extra singlet Higgs

In a promising class of models a singlet Higgs S is added
and the UL term arises from the S VEV (the 1 problem is soved)

A SH H,
Mixing with S can bring the light Higgs mass down at tree level
(no need of large loop corrections)

NMSSM: A < ~ 0.7 the theory remains perturbative up to M¢;
(no need of large stop mixing, less fine tuning)

ASUSY: A~1-2  for A> 2 theory non pert. at ~10 TeV

<



NMSSM Higgs Mass

A=06,07
m; = 1200, 500 GeV |
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Hall et al ‘11 Mixing with S makes h light
ASUSY Higgs Mass already at tree level

1000} /
" | No need of loops

500!} A=2

Fine tuning can be very small
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It is not excluded that

at 125 GeV

you see the heaviest of the two
and the lightest escaped detection
at LEP

@ Ellwanger ‘11




In MSSM it is not possible to obtain an enhanced vy signal
for m, ~ 125 GeV, while it is possible eg in NMSSM or A SUSY

Arvanitaki et al ‘11
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In A SUSY the bb mode can be suppressed [so B(yy) enhanced]

A SUSY
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A SUSY spectrum (A = 2)

Hall et al ‘11
2> 10-100 TeV !!! !!Il!
3000 4- J Drawbacks:
[ B relation with GUT's &
1500 + SEELEEE coupling unification
Is generically lost
H,H*
500 +  ----eeee s i g-2?
h
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If the Fine Tuning problem is ignored (anthropic philosophy)
than SUSY particles can drift at large scales

Split SUSY: maintains coupling unification and viable DM
candidate but otherwiseallows heavy SUSY particles

Giudice et al 11

Large scale SUSY: all sparticles heavy. The quartic Higgs

coupling is fixed by the gauge coupling at the large scale
and fixes m, at the EW scale

Hall et al ‘11

These models are strongly constrained by m, ~ 125 GeV
Remain valid with the large scale brought down, more so

P if tgP is large)



Higgs mass my, in GeV
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High—Scale supersymmetry
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« Composite Higgs: an alternative class of models
discussed here by Rattazzi, Wulzer, Santiago Georgi, Kaplan ‘84

The light Higgs is a bound state of a strongly interacting sector.
Pseudo-Goldstone boson of an enlarged symmetry.

eg. SO(5)/S0(4)

Agashe/ Contino/Pomarol/Sundrum/ Grojean/Rattazzi....

v~ EWscale  f~ Slscale m,

~f<m <~ 4rt

&= (v/f)? l
¢ interpolates between SM [§ ~ 0]

and some degree of compositeness my

[E ~ o(1) limited by precision EW tests, My

E=1 is as bad as technicolor]

<



The Higgs couplings are deformed by &-dependent effects

2

1 ‘ : h hi&
£ =5(0uh)* = V(h) + %Tr (D.>'D*3) [1 +2a+bs+. ]

_ h
— mi YL X (1+c;+...)’§f)m + h.c.,

SM:a=b =c=1 a=+/1-¢ b=1-—2¢
for SO(5)/S0(4)



Detectable ¢ effects at the LHC

® Higgs couplings
® WW scattering

® 2-Higgs Production

Ww -> WW

Contino et al
PARTOMN LEVEL

0yop (WHWH—WHWH) [fb]
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Conclusion

The Higgs comes closer

2012 will be the year of the Higgs:
yes or no to the SM Higgs

New Physics is pushed further away

But the LHC experiments are just at the start and
larger masses can be reached in 2012
and even more in the 14 TeV phase

Supersymmetry? Compositeness? Extra dimensions?
Anthropic? We shall see



As a last speaker, on behalf of all participants,

| most warmly thank the Organisers of this very
interesting Workshop that really came

at the right time with the right people



