
Soft-gluon resummation for H-production:
Methods and results

V. Ahrens, TB, M. Neubert, L. L. Yang: 0808.3008 (PRD), 0809.4283 (EPJC), 1008.3162 (PLB)

Thomas Becher

Zürich Phenomenology Workshop, 10.1. 2012 

Wednesday, January 18, 12



I will discuss soft-gluon resummation for the 
Higgs total cross section. Different methods 

• based on the same factorization formula, 

• with same N3LL+NNLO accuracy,

can give fairly (~ 5-10%) different cross 
sections.

Different choices of

• expansion parameters, 

• scale setting prescriptions
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Each%Higgs%production%also%comes%with%
different%relative%uncertainties%

Ben%Kilminster,%Zurich%2012%Higgs%workshop% 15%

gg%�%H%uncertainties%are%largest%despite%tremendous%set%of%calculations%:%
% QCD%radiative%corrections%at%NLO%
% QCD%corrections%NNLO%
% QCD%softGgluon%resummation%NNLL%
% EWK%corrections%NLO%
% top%and%bottom%loop%corrections%up%NLO%
% above%400%GeV,%line%shape%unknown%
%
% %
%

Details%&%references% in%CMS+ATLAS% %
combination%note%

Correlated%between%all%%
channels%and%each%
experiment%

At%LHC%
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State of the art predictions
Fixed order:

Anastasiou, Bühler, Herzog, Lazopoulos, 1107.0683
http://www.phys.ethz.ch/~pheno/ihixs/

Resummed:

de Florian, Grazzini, 0901.2427 
http://theory.fi.infn.it/grazzini/hcalculators.html

Ahrens, TB, Neubert,Yang, 1008.3162 
http://projects.hepforge.org/rghiggs/
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Results for the cross section

• Based on MSTW08NNLO. 

•  ± 8 % PDF + αs uncertainty @ 90% CL

• ± 4 % PDF + αs  uncertainty @ 68% CL

• PDF4LHC prescription gives +8/-7% unc.

• Numerically, there is excellent agreement for σ .

 σ [pb] scale unc. Δσ [%]
iHixs 15.37 +9/-8
deFG 15.40 +7/-8

RGHiggs 15.43 +3/-1
for mH=125 GeV, LHC 7TeV, mt=173.1 GeV, mb=4.2 GeV
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Differences
Several differences in resummed results hide behind 
the numerical agreement:

• We find that soft-gluon resummation alone 
increases cross section by 3%, dFG find 8%. 
More than a factor of 2 difference in the 
resummation itself!

• Use different treatment of hard function gives (“π2 
resummation”), yields 9% increase.

• once this is done, soft-gluon resummation itself 
becomes negligible

• iHixs uses μ=MH/2: σ is 10% larger than at μ=MH. 
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Common issues 
in soft-gluon resummation
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Common first step: integrate out the top

For                   we can integrate out the top quark, i.e. 
replace the SM by an effective theory with             .

Calculations in EFT are much simpler. One loop and one 
scale less. NNLO results only available in EFT.

Ct known to NNNLO, excellent convergence. Power 
corrections (mH/mt)2 are small for light Higgs.

mH � 2mt

nf = 5
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g
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Figure 1: Leading order diagram to the process gg → H: (a) in the full and (b) in
the effective theory. The “⊗” denotes the effective vertex of Eq. (2).

The dominant production mechanism for a Higgs boson with a mass below 1 TeV at the
LHC will be through gluon-gluon fusion (for a review see [3]). The coupling of the gluons
to the Higgs boson is mediated through a quark loop, Fig. 1 (a). In the heavy quark limit,
the corresponding form factor becomes independent of the quark mass. Thus, this process
can be used, for example, to count the number of heavy quarks that may exist beyond the
third generation.

The current theoretical prediction for this reaction carries an uncertainty of about a factor
of 1.5 to 2. It is therefore important to improve on the theoretical accuracy. In this paper
we provide a gauge invariant ingredient to the complete next-to-next-to-leading order
prediction, namely the virtual corrections up to order α4

s. The calculation is, to our
knowledge, the first application of a recently introduced method that allows to relate the
relevant set of vertex diagrams to the more familiar class of three-loop two-point functions.

2 Effective Lagrangian

As it was mentioned before, the coupling of the gluons to the Higgs boson is mediated
through a quark loop, Fig. 1 (a). Since all quarks except for the top are much lighter than
the current lower limit on the Higgs mass, we will neglect their masses in the following. In
this case, the top quark is the only one that couples directly to the Higgs boson, because
the Higgs-fermion vertex is proportional to the fermion mass. The leading order result
has been known for quite a while [4]. At the parton level it reads:
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GFα2

s(µ
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where s is the partonic cms energy and GF is the Fermi coupling constant. αs is the strong
coupling constant which depends on the renormalization scale µ. Mt is the pole mass of
the top quark, and MH is the Higgs mass. In order to arrive at the cross section for hadron
collisions, σLO has to be folded with the gluon distribution functions.
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Figure 1: Comparison of the complete fixed-order results (solid lines) and the contributions
from the leading singular terms (dashed lines) to the total cross sections for Higgs-boson
production at the Tevatron (left) and the LHC (right). We set µf = mH . Darker lines
represent higher orders in αs.

of the NLO (NNLO) correction to the cross section are due to parton production channels
different from gg → H .

In [27] we have investigated for the case of Drell-Yan production the question to what
extent the dominance of the leading singular terms can be justified based on the strong fall-off
of the parton luminosities. In the present case, setting µf = 120GeV for example, we find
that ffgg(y, µf) ∝ y−a with a ≈ 2.5 for y < 0.05, and ffgg(y, µf) ∝ (1 − y)b with b ≈ 14.5 for
y > 0.3. Due to this strong fall-off, the integral in (1) is dominated by z values near τ . For τ
values exceeding 0.3, the partonic threshold contributions would be enhanced by logarithms of
b ≈ 14.5. However, even at the Tevatron the center-of-mass energy is so high that τ ! 0.02 for
Higgs-boson masses below 300GeV. In this region the cross section (1) is well approximated
by the simple formula [27]

σ ≈ σBorn

∫ 1

0

dz za−1 C(z, mt, mH , µf) ; σBorn = σ0 ffgg(τ, µf) , (10)

with a − 1 ≈ 1.5. Since the weight function za−1 is not strongly peaked near z = 1, the
threshold dominance cannot be explained parametrically in this case. Indeed, we will see later
that threshold resummation alone has a very minor effect on the predictions for the cross
section. As a side remark, we note that (10) implies the scaling σ ∝ m−2(a−1)

H ≈ m−3
H .

Let us now discuss in more detail the different momentum regions that contribute to the
Higgs-boson production cross section. For a not too heavy Higgs boson, the gluon-gluon fusion
process gg → H is well approximated by the effective local interaction [30–34]

Leff = Ct(m
2
t , µ

2)
H

v

αs(µ2)

12π
Gµν,a Gµν

a , (11)

where v ≈ 246GeV is the Higgs vacuum expectation value, and µ denotes the scale at which
the local two-gluon operator is renormalized. The short-distance coefficient Ct is known up to

5
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Common: factorization theorem

Scale of soft radiation is lower than mH : large (?) pert. logarithms.

H

p

p

h
 H =                +              +             

2

hard function soft function parton luminosity

soft radiation

Sterman ’87, Catani & Trentadue ’88  

⌧ =
m2

H

s
⇡ 0.0003

H(m2
H , µ)

Z 1

⌧

S(
p

ŝ(1� z), µ)ffgg(⌧/z, µ)
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Parton Luminosity

Fall-off is not very strong. Will find typical 
scale of radiation is of order MH/2 .
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Threshold dominance?

At  z = τ = MH2/s ~ 0.0003 the fall off is a=2.5.
 → Threshold region is not strongly enhanced.
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Figure 1: Comparison of the complete fixed-order results (solid lines) and the contributions
from the leading singular terms (dashed lines) to the total cross sections for Higgs-boson
production at the Tevatron (left) and the LHC (right). We set µf = mH . Darker lines
represent higher orders in αs.

of the NLO (NNLO) correction to the cross section are due to parton production channels
different from gg → H .

In [28] we have investigated for the case of Drell-Yan production the question to what
extent the dominance of the leading singular terms can be justified based on the strong fall-off
of the parton luminosities. In the present case, setting µf = 120GeV for example, we find
that ffgg(y, µf) ∝ y−a with a ≈ 2.5 for y < 0.05, and ffgg(y, µf) ∝ (1 − y)b with b ≈ 14.5 for
y > 0.3. Due to this strong fall-off, the integral in (1) is dominated by z values near τ . For τ
values exceeding 0.3, the partonic threshold contributions would be enhanced by logarithms of
b ≈ 14.5. However, even at the Tevatron the center-of-mass energy is so high that τ ! 0.02 for
Higgs-boson masses below 300GeV. In this region the cross section (1) is well approximated
by the simple formula [28]

σ ≈ σBorn

∫ 1

0

dz za−1 C(z, mt, mH , µf) ; σBorn = σ0 ffgg(τ, µf) , (10)

with a − 1 ≈ 1.5. Since the weight function za−1 is not strongly peaked near z = 1, the
threshold dominance cannot be explained parametrically in this case. Indeed, we will see later
that threshold resummation alone has a very minor effect on the predictions for the cross
section. As a side remark, we note that (10) implies the scaling σ ∝ m−2(a−1)

H ≈ m−3
H .

Let us now discuss in more detail the different momentum regions that contribute to the
Higgs-boson production cross section. For a not too heavy Higgs boson, the gluon-gluon fusion
process gg → H is well approximated by the effective local interaction [31–35]

Leff = Ct(m
2
t , µ

2)
H

v

αs(µ2)

12π
Gµν,a Gµν

a , (11)

where v ≈ 246 GeV is the Higgs vacuum expectation value, and µ denotes the scale at which
the local two-gluon operator is renormalized. The short-distance coefficient Ct is known up to

5

ffgg(z) ⇠ za

z
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Moment space

Same picture: typical moment is second moment of 
cross section. (Note: Plot is for Drell-Yan not Higgs.)
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Figure 3: The position of the saddle point N0 for the Mellin inversion integral Eq. (2.5) as a
function of ⇧ with the cross-section Eq. (2.7) determined using the O(�S) Drell-Yan cross-section
Eq. (2.25) for neutral dileptons and NNPDF2.0 [8] parton distributions, with Q = 100 GeV.
The two upper curves refer, from the top, to pp and pp̄ collisions. The lowest (dashed) curve is
the position of the saddle at the parton level, i.e. omitting the parton luminosity in Eq. (2.7).

Note that of course at leading order ⌅̂(N) is just a constant. The Mellin transform of the NLO
term is

C1(N) = CF

�
2⇤2

3
� 4 + 2⇥2

E + 2⌃2
0(N)� ⌃1(N) + ⌃1(N + 2) + 4⇥E⌃0(N)

+
2

N
[⇥E + ⌃0(N + 1)] +

2

N + 1
[⇥E + ⌃0(N + 2)]

⇥
, (2.25)

and was shown in Fig. 1.
We have then determined the position of the saddle point N0 in a realistic situation, i.e.,

using the partonic cross-section Eq. (2.25) for Drell-Yan production of a neutral lepton pair
of invariant mass Q = 100 GeV at a pp or pp̄ collider, with a parton luminosity determined
using NNPDF2.0 [8] parton distributions. Comparing the realistic curves of Fig. 3 to those in
Fig. 2, which were determined using the toy initial PDFs Eqs. (2.11, 2.19) and neglecting the
contribution from the hard cross-section we see that the pp curve of Fig. 3 agrees well with the
sea–valence curve of Fig. 2, as one would expect given that in pp collisions one must always
pick up at least a sea (antiquark) PDF. The case of pp̄ is slightly more subtle: in this case, for
⇧ & 0.1 the curve in Fig. 3 agrees well with the valence–valence curve of Fig. 2. However, for
smaller values of ⇧ the position of N0 computed using the full luminosity decreases much more
slowly: this is due to the fact that as N . 2 the contribution ⇥+ rapidly grows due to the pole

10

Bonvini, Forte Ridolphi  1009.5691

N0

M2/s
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Upshot
• For Higgs at LHC, harder emissions are 

not strongly suppressed by PDFs.

• Expansion around soft limit has an 
expansion parameter ~1/2

• Exact choice of expansion parameter 
(or space in which expansion is 
performed) matters.

• Relatively strong scheme depenence.
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Three differences
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Differences
1. Integral transform / choice of sing. distribution

a. Mellin moments
b. Laplace transform (in Es)

2. Scale setting for soft emissions
a. on the partonic level
b. on the hadronic level

3. Evaluation of for the hard function
a. time-like
b. space-like

de Florian and Grazzini           Ahrens, TB, Neubert, Yang
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Soft emissions give rise to singular 
distributions in partonic cross section Cgg.

Resummation will predicts singular distribution 
terms to all orders.

Soft emissions

1 Introduction

Techniques for resumming threshold logarithms have been well established in quantum chro-
modynamics (QCD). However, di�erent approaches exist in the literature and often lead to
visible numerical di�erences. In the case of Higgs production via gluon fusion, there are two
resummation calculations [1,2] and [3,4], which made di�erent claims about the size of the re-
summation e�ect beyond next-to-next-to-leading-order (NNLO). Therefore, it is necessary to
clarify the di�erence between these two approaches, which can be summarized in the following
points:

• Di�erent integral transforms;

• Di�erent choices of the soft scale;

• Di�erent subleading terms.

• In [3, 4], another class of corrections arising from analytical continuation, which appear
in the form of (CA�s⇤)n, are resummed.

The purpose of this paper is then to investigate the e�ects from these di�erences separately.
We start from the cross section formula for Higgs production via gluon fusion in the heavy

quark limit. Neglecting suppressed partonic channels at higher orders, we only show here the
gluon initialized channel, which is the subject of threshold resummation:

⌅(⇧) = ⌅0(µf )

⌥ 1

�

dz

z
Cgg(z, mt, mH , µf ) ffgg(⇧/z, µf ) , (1)

where

⌅0(µf ) =
GF⌅

2

�2
s(µf )

288⇤

�����
⌃

q

A(xq)

�����

2

⇧ (2)

with ⇧ = m2
H/s and s being the hadronic center-of-mass energy, Cgg(z,mt, mH , µf ) is related

to the partonic cross section and ffgg is the gluon luminosity function

ffgg(y, µf ) =

⌥ 1

y

dx

x
fg/N1(x, µf ) fg/N2(y/x, µf ) . (3)

Here and below for simplicity we do not distinguish the renormalization scale and the fac-
torization scale, and denote both as µf . The renormalization scale dependence can be easily
recovered by expressing �s(µf ) in terms of �s(µr). The function A(xq) with xq ⇤ 4m2

q/m
2
H

comes from the heavy quark loop at leading order and can be found in [3].
The objects to resum are the singular distributions in Cgg(z,mt, mH , µf ) of the form

Pn(z) =

⌅
lnn(1� z)

1� z

⇧

+

or P �
n(z) =

⌅
1

1� z
lnn

⇥
1� z⌅

z

⇤⇧

+

, (4)
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To perform the resummation one takes the 
Laplace or Mellin moment transform of the 
cross section.

• In SCET, we solve RG in Laplace space 
and then invert analytically. 

• Traditional resummation performed in 
moment space. Numerical inversion at 
the end.

Integral transform

where the plus-distribution is defined by

⇧ 1

0

dz
�
f(z)

⇥
+

g(z) ⇥
⇧ 1

0

dz f(z)
�
g(z)� g(1)

⇥
. (5)

Note that since resummation works in the limit z ⇤ 1, the di�erence between using Pn(z)
and P ⇥

n(z), which is proportional to ln(z), is subleading in 1� z.
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Resummation is then achieved by solving the evolution equations of the various functions Ct,
H, and S. While the evolution equations for Ct and H are easy to solve, that for S can be
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limit N ⇤ ⌅, and di�er only by terms of the order 1/N . This is the reason that we have
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Threshold z =  1 corresponds to expansion around 
N → ∞. Mellin and Laplace space results are the 
same after expansion. 

Difference arises in the inverse transform:

Singular terms from Mellin inversion

1 Introduction

Techniques for resumming threshold logarithms have been well established in quantum chro-
modynamics (QCD). However, di�erent approaches exist in the literature and often lead to
visible numerical di�erences. In the case of Higgs production via gluon fusion, there are two
resummation calculations [1,2] and [3,4], which made di�erent claims about the size of the re-
summation e�ect beyond next-to-next-to-leading-order (NNLO). Therefore, it is necessary to
clarify the di�erence between these two approaches, which can be summarized in the following
points:

• Di�erent integral transforms;

• Di�erent choices of the soft scale;

• Di�erent subleading terms.

• In [3, 4], another class of corrections arising from analytical continuation, which appear
in the form of (CA�s⇤)n, are resummed.

The purpose of this paper is then to investigate the e�ects from these di�erences separately.
We start from the cross section formula for Higgs production via gluon fusion in the heavy

quark limit. Neglecting suppressed partonic channels at higher orders, we only show here the
gluon initialized channel, which is the subject of threshold resummation:

⌅(⇧) = ⌅0(µf )

⌥ 1

�

dz

z
Cgg(z, mt, mH , µf ) ffgg(⇧/z, µf ) , (1)

where

⌅0(µf ) =
GF⌅

2

�2
s(µf )

288⇤

�����
⌃

q

A(xq)

�����

2

⇧ (2)

with ⇧ = m2
H/s and s being the hadronic center-of-mass energy, Cgg(z,mt, mH , µf ) is related

to the partonic cross section and ffgg is the gluon luminosity function

ffgg(y, µf ) =

⌥ 1

y

dx

x
fg/N1(x, µf ) fg/N2(y/x, µf ) . (3)

Here and below for simplicity we do not distinguish the renormalization scale and the fac-
torization scale, and denote both as µf . The renormalization scale dependence can be easily
recovered by expressing �s(µf ) in terms of �s(µr). The function A(xq) with xq ⇤ 4m2

q/m
2
H

comes from the heavy quark loop at leading order and can be found in [3].
The objects to resum are the singular distributions in Cgg(z,mt, mH , µf ) of the form

Pn(z) =

⌅
lnn(1� z)

1� z

⇧

+

or P �
n(z) =

⌅
1

1� z
lnn

⇥
1� z⌅
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⇤⇧

+

, (4)
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⇥
= 4P3(z)� 2⇧2P1(z) + 8⌅3P0(z) +

⇧4

60
⇥(1� z) .

The Mellin transform of Pn(z) is approximately the same as the Laplace transform up
to terms suppressed by 1/N . For completeness, we note that the exact transform can be
generated by
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. (52)

To compute the inverse Mellin transform of lnn N̄ , we use the formula
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and again expand both sides in ⇤. The results read
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1 Introduction

Techniques for resumming threshold logarithms have been well established in quantum chro-
modynamics (QCD). However, di�erent approaches exist in the literature and often lead to
visible numerical di�erences. In the case of Higgs production via gluon fusion, there are two
resummation calculations [1,2] and [3,4], which made di�erent claims about the size of the re-
summation e�ect beyond next-to-next-to-leading-order (NNLO). Therefore, it is necessary to
clarify the di�erence between these two approaches, which can be summarized in the following
points:

• Di�erent integral transforms;

• Di�erent choices of the soft scale;

• Di�erent subleading terms.

• In [3, 4], another class of corrections arising from analytical continuation, which appear
in the form of (CA�s⇤)n, are resummed.

The purpose of this paper is then to investigate the e�ects from these di�erences separately.
We start from the cross section formula for Higgs production via gluon fusion in the heavy

quark limit. Neglecting suppressed partonic channels at higher orders, we only show here the
gluon initialized channel, which is the subject of threshold resummation:

⌅(⇧) = ⌅0(µf )
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dz
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where
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GF⌅
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288⇤
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with ⇧ = m2
H/s and s being the hadronic center-of-mass energy, Cgg(z,mt, mH , µf ) is related

to the partonic cross section and ffgg is the gluon luminosity function

ffgg(y, µf ) =

⌥ 1

y

dx

x
fg/N1(x, µf ) fg/N2(y/x, µf ) . (3)

Here and below for simplicity we do not distinguish the renormalization scale and the fac-
torization scale, and denote both as µf . The renormalization scale dependence can be easily
recovered by expressing �s(µf ) in terms of �s(µr). The function A(xq) with xq ⇤ 4m2

q/m
2
H

comes from the heavy quark loop at leading order and can be found in [3].
The objects to resum are the singular distributions in Cgg(z,mt, mH , µf ) of the form

Pn(z) =

⌅
lnn(1� z)

1� z

⇧

+

or P �
n(z) =

⌅
1

1� z
lnn

⇥
1� z⌅

z

⇤⇧

+

, (4)

1

+ . . . + . . .

+ . . . + . . .

Mellin

Laplace (� lnN)n+1

(� lnN)n+1
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Relation

The main difference between the two 
approaches is a factor of      :

� ln z =
1� zp

z
+O ⇥

(1� z)3
⇤

p
z

lnn(� ln z)
� ln z

⇡
p

z ⇥
lnn 1�zp

z

1� z

such terms do arise in 
fixed-order computation power correction at 

threshold z=1
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LO NLO NNLO NNNLO
full 5.08 6.50 4.05 ?

Laplace 5.08 4.86 1.82 -0.65
Laplace Es 5.08 5.56 3.13 0.430

Mellin 5.08 6.25 4.05 0.942
Factor of 2 difference!

Singular terms to N3LO

• Large differences among schemes.

• The singular pieces in the Mellin 
approach are close to the full result.

numerical results from L.L. Yang
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2. Difference: choice of soft scaleZ 1

⌧
S(
p

ŝ(1� z), µ)ffgg(⌧/z, µ)

µ =
p

ŝ(1� z)

Appropriate scale µ is the soft radiation? Can set 
scale either at

(a)partonic level: set                         . Need 
prescription for Landau pole. 

(b)hadronic level: set µ to average energy of 
soft radiation, determined numerically. 
Result µ ~ MH/2.

Numerically, the two prescriptions give similar 
result [(b) yields 20-50% larger N3LO.]
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3. Choice of the hard scale 

• Hard function is scale dependent.

• Large corrections for any µ2 !?!

1.00.5 2.0

1.0

1.2

1.4

1.6

1.8

2.0

µ2/m2
H

H
(m

2 H
,µ

2
)

LO

NLO
NNLO
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• Hard function

• Scalar form factor

• Perturbative expansions

Scalar form factor
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The very large K-factor for Higgs-boson production at hadron colliders is shown to result from
enhanced perturbative corrections of the form (CAπαs)

n, which arise in the analytic continuation
of the gluon form factor to time-like momentum transfer. These terms are resummed to all orders
in perturbation theory using the renormalization group. After the resummation, the K-factor for
the production of a light Higgs boson at the LHC is reduced to a value close to 1.3.

I. INTRODUCTION

The discovery of the Higgs boson is the most important
goal of modern particle physics. The inclusive production
cross sections for pp → H +X and pp̄ → H +X have been
calculated a long time ago at next-to-leading order (NLO)
in perturbation theory [1, 2], and since a few years results
at next-to-next-to-leading order (NNLO) are available [3,
4, 5]. Inclusive Higgs-boson production is thus one of the
best studied processes from a theoretical perspective.

In view of this fact, it is uncomfortable that the behav-
ior of QCD perturbation theory appears to be rather poor
in this case. The K-factor for Higgs-boson production,
defined as the prediction for the cross section normalized
to the Born approximation, takes surprisingly large values.
For the production of a light Higgs boson (mH < 150GeV)
at the LHC, one typically finds K ≈ 1.7–1.9 at NLO and
K ≈ 2.0–2.2 at NNLO. Also, the residual dependence on
the renormalization and factorization scales remains signif-
icant even at NNLO. The standard argument that the large
K-factor results from the accessibility of new production
channels beyond the leading order, such as qg → Hq and
qq̄ → H , does not apply in this case, as these contributions
to the cross section are known to be below 10%. Also, the
K-factor is not much reduced by soft-gluon resummation
near the partonic threshold [6].

In this Letter we show that the bulk of the large per-
turbative corrections to Higgs-boson production via gluon-
gluon fusion originate from terms of the form (CAπαs)n

arising from the analytic continuation of the gluon form
factor to time-like momentum transfer, and that these
terms exponentiate to leading order.

II. TIME-LIKE GLUON FORM FACTOR

The Higgs-boson production cross section at hadron col-
liders such as the Tevatron or LHC is dominated by the
gluon-gluon fusion process gg → H via a top-quark loop.
For a not too heavy Higgs boson, this process is well ap-
proximated by the effective local interaction [7]

Leff = Ct(m
2
t , µ

2)
H

v
Gµν,a Gµν

a , (1)

where v ≈ 246GeV is the Higgs vacuum expectation value,
and the short-distance coefficient Ct = αs/(12π) + O(α2

s)
is known to NNLO [8] and has a well behaved perturba-
tive expansion for µ ∼ mH . The production cross section
is related to the discontinuity of the product of two such
effective vertices. It can be written as the convolution of a
hard-scattering kernel with parton distribution functions.

The large corrections we identify are due to virtual cor-
rections to the effective ggH interaction (1) and arise from
quantum corrections characterized by the scale µ ∼ mH .
These effects are described by a universal factor and af-
fect differential distributions in same way as the total
cross section. They can be factorized into a hard function
H(m2

H , µ2), which is the square of the on-shell gluon form
factor evaluated at time-like momentum transfer q2 = m2

H ,
and with infrared divergences subtracted using the MS
scheme [9, 10, 11]. On a technical level, the hard func-
tion appears as a Wilson coefficient in the matching of the
two-gluon operator in (1) onto an operator in soft-collinear
effective theory (SCET) [12, 13], in which all hard modes
have been integrated out. This matching takes the form

Gµν,a Gµν
a → CS(Q2, µ2)Q2 gµν A

µ,a
n⊥ A

ν,a
n̄⊥ , (2)

where Q2 = −q2 is (minus) the square of the total momen-
tum carried by the operator. The fields A

µ,a
n⊥ and A

ν,a
n̄⊥ are

effective, gauge-invariant gluon fields in SCET [14]. They
describe gluons propagating along the two light-like direc-
tions n, n̄ defined by the colliding hadrons.

The two-loop expression for the Wilson coefficient CS

can be extracted from the results of [15]. We write

CS(Q2, µ2) = 1 +
∞
∑

n=1

cn(L)

(

αs(µ2)

4π

)n

, (3)

where L = ln(Q2/µ2). The one-loop coefficient reads

c1(L) = CA

(

−L2 +
π2

6

)

, (4)

and the result for the two-loop coefficient can be found in
[10, 16]. The hard function is given by the absolute square
of the Wilson coefficient at time-like momentum transfer,

H(m2
H , µ2) =

∣

∣CS(−m2
H − iε, µ2)

∣

∣

2
. (5)
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is related to the discontinuity of the product of two such
effective vertices. It can be written as the convolution of a
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of the gluon form factor to time-like momentum transfer. These terms are resummed to all orders
in perturbation theory using the renormalization group. After the resummation, the K-factor for
the production of a light Higgs boson at the LHC is reduced to a value close to 1.3.

I. INTRODUCTION

The discovery of the Higgs boson is the most important
goal of modern particle physics. The inclusive production
cross sections for pp → H +X and pp̄ → H +X have been
calculated a long time ago at next-to-leading order (NLO)
in perturbation theory [1, 2], and since a few years results
at next-to-next-to-leading order (NNLO) are available [3,
4, 5]. Inclusive Higgs-boson production is thus one of the
best studied processes from a theoretical perspective.

In view of this fact, it is uncomfortable that the behav-
ior of QCD perturbation theory appears to be rather poor
in this case. The K-factor for Higgs-boson production,
defined as the prediction for the cross section normalized
to the Born approximation, takes surprisingly large values.
For the production of a light Higgs boson (mH < 150GeV)
at the LHC, one typically finds K ≈ 1.7–1.9 at NLO and
K ≈ 2.0–2.2 at NNLO. Also, the residual dependence on
the renormalization and factorization scales remains signif-
icant even at NNLO. The standard argument that the large
K-factor results from the accessibility of new production
channels beyond the leading order, such as qg → Hq and
qq̄ → H , does not apply in this case, as these contributions
to the cross section are known to be below 10%. Also, the
K-factor is not much reduced by soft-gluon resummation
near the partonic threshold [6].

In this Letter we show that the bulk of the large per-
turbative corrections to Higgs-boson production via gluon-
gluon fusion originate from terms of the form (CAπαs)n

arising from the analytic continuation of the gluon form
factor to time-like momentum transfer, and that these
terms exponentiate to leading order.

II. TIME-LIKE GLUON FORM FACTOR

The Higgs-boson production cross section at hadron col-
liders such as the Tevatron or LHC is dominated by the
gluon-gluon fusion process gg → H via a top-quark loop.
For a not too heavy Higgs boson, this process is well ap-
proximated by the effective local interaction [7]

Leff = Ct(m
2
t , µ

2)
H

v
Gµν,a Gµν

a , (1)

where v ≈ 246GeV is the Higgs vacuum expectation value,
and the short-distance coefficient Ct = αs/(12π) + O(α2

s)
is known to NNLO [8] and has a well behaved perturba-
tive expansion for µ ∼ mH . The production cross section
is related to the discontinuity of the product of two such
effective vertices. It can be written as the convolution of a
hard-scattering kernel with parton distribution functions.

The large corrections we identify are due to virtual cor-
rections to the effective ggH interaction (1) and arise from
quantum corrections characterized by the scale µ ∼ mH .
These effects are described by a universal factor and af-
fect differential distributions in same way as the total
cross section. They can be factorized into a hard function
H(m2

H , µ2), which is the square of the on-shell gluon form
factor evaluated at time-like momentum transfer q2 = m2

H ,
and with infrared divergences subtracted using the MS
scheme [9, 10, 11]. On a technical level, the hard func-
tion appears as a Wilson coefficient in the matching of the
two-gluon operator in (1) onto an operator in soft-collinear
effective theory (SCET) [12, 13], in which all hard modes
have been integrated out. This matching takes the form

Gµν,a Gµν
a → CS(Q2, µ2)Q2 gµν A

µ,a
n⊥ A

ν,a
n̄⊥ , (2)

where Q2 = −q2 is (minus) the square of the total momen-
tum carried by the operator. The fields A

µ,a
n⊥ and A

ν,a
n̄⊥ are

effective, gauge-invariant gluon fields in SCET [14]. They
describe gluons propagating along the two light-like direc-
tions n, n̄ defined by the colliding hadrons.

The two-loop expression for the Wilson coefficient CS

can be extracted from the results of [15]. We write

CS(Q2, µ2) = 1 +
∞
∑

n=1

cn(L)

(

αs(µ2)

4π

)n

, (3)

where L = ln(Q2/µ2). The one-loop coefficient reads

c1(L) = CA

(

−L2 +
π2

6

)

, (4)

and the result for the two-loop coefficient can be found in
[10, 16]. The hard function is given by the absolute square
of the Wilson coefficient at time-like momentum transfer,

H(m2
H , µ2) =

∣

∣CS(−m2
H − iε, µ2)

∣

∣

2
. (5)
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n, which arise in the analytic continuation
of the gluon form factor to time-like momentum transfer. These terms are resummed to all orders
in perturbation theory using the renormalization group. After the resummation, the K-factor for
the production of a light Higgs boson at the LHC is reduced to a value close to 1.3.

I. INTRODUCTION

The discovery of the Higgs boson is the most important
goal of modern particle physics. The inclusive production
cross sections for pp → H +X and pp̄ → H +X have been
calculated a long time ago at next-to-leading order (NLO)
in perturbation theory [1, 2], and since a few years results
at next-to-next-to-leading order (NNLO) are available [3,
4, 5]. Inclusive Higgs-boson production is thus one of the
best studied processes from a theoretical perspective.

In view of this fact, it is uncomfortable that the behav-
ior of QCD perturbation theory appears to be rather poor
in this case. The K-factor for Higgs-boson production,
defined as the prediction for the cross section normalized
to the Born approximation, takes surprisingly large values.
For the production of a light Higgs boson (mH < 150GeV)
at the LHC, one typically finds K ≈ 1.7–1.9 at NLO and
K ≈ 2.0–2.2 at NNLO. Also, the residual dependence on
the renormalization and factorization scales remains signif-
icant even at NNLO. The standard argument that the large
K-factor results from the accessibility of new production
channels beyond the leading order, such as qg → Hq and
qq̄ → H , does not apply in this case, as these contributions
to the cross section are known to be below 10%. Also, the
K-factor is not much reduced by soft-gluon resummation
near the partonic threshold [6].

In this Letter we show that the bulk of the large per-
turbative corrections to Higgs-boson production via gluon-
gluon fusion originate from terms of the form (CAπαs)n

arising from the analytic continuation of the gluon form
factor to time-like momentum transfer, and that these
terms exponentiate to leading order.

II. TIME-LIKE GLUON FORM FACTOR

The Higgs-boson production cross section at hadron col-
liders such as the Tevatron or LHC is dominated by the
gluon-gluon fusion process gg → H via a top-quark loop.
For a not too heavy Higgs boson, this process is well ap-
proximated by the effective local interaction [7]

Leff = Ct(m
2
t , µ

2)
H

v
Gµν,a Gµν

a , (1)

where v ≈ 246GeV is the Higgs vacuum expectation value,
and the short-distance coefficient Ct = αs/(12π) + O(α2

s)
is known to NNLO [8] and has a well behaved perturba-
tive expansion for µ ∼ mH . The production cross section
is related to the discontinuity of the product of two such
effective vertices. It can be written as the convolution of a
hard-scattering kernel with parton distribution functions.

The large corrections we identify are due to virtual cor-
rections to the effective ggH interaction (1) and arise from
quantum corrections characterized by the scale µ ∼ mH .
These effects are described by a universal factor and af-
fect differential distributions in same way as the total
cross section. They can be factorized into a hard function
H(m2

H , µ2), which is the square of the on-shell gluon form
factor evaluated at time-like momentum transfer q2 = m2

H ,
and with infrared divergences subtracted using the MS
scheme [9, 10, 11]. On a technical level, the hard func-
tion appears as a Wilson coefficient in the matching of the
two-gluon operator in (1) onto an operator in soft-collinear
effective theory (SCET) [12, 13], in which all hard modes
have been integrated out. This matching takes the form

Gµν,a Gµν
a → CS(Q2, µ2)Q2 gµν A

µ,a
n⊥ A

ν,a
n̄⊥ , (2)

where Q2 = −q2 is (minus) the square of the total momen-
tum carried by the operator. The fields A

µ,a
n⊥ and A

ν,a
n̄⊥ are

effective, gauge-invariant gluon fields in SCET [14]. They
describe gluons propagating along the two light-like direc-
tions n, n̄ defined by the colliding hadrons.

The two-loop expression for the Wilson coefficient CS

can be extracted from the results of [15]. We write

CS(Q2, µ2) = 1 +
∞
∑

n=1

cn(L)

(

αs(µ2)

4π

)n

, (3)

where L = ln(Q2/µ2). The one-loop coefficient reads

c1(L) = CA

(

−L2 +
π2

6

)

, (4)

and the result for the two-loop coefficient can be found in
[10, 16]. The hard function is given by the absolute square
of the Wilson coefficient at time-like momentum transfer,

H(m2
H , µ2) =

∣

∣CS(−m2
H − iε, µ2)

∣

∣

2
. (5)

2

The Wilson coefficient obeys an evolution equation, which
reflects the renormalization properties of the effective two-
gluon operator in SCET. It reads [9]

dCS(Q2, µ2)

d lnµ
=

[

ΓA
cusp(αs) ln

Q2

µ2
+ γS(αs)

]

CS(Q2, µ2) ,

(6)
where ΓA

cusp is the cusp anomalous dimension of Wilson
lines with light-like segments in the adjoint representation
of SU(Nc). It controls the leading Sudakov double loga-
rithms contained in CS and is known to three-loop order
[17]. The single-logarithmic evolution is controlled by the
anomalous dimension γS , which can be extracted from the
infrared divergences of the on-shell form factor [9]. Us-
ing results from [18] it can be derived to three-loop order
[16]. The evolution equation (6) links the coefficients of
the logarithmic terms in (3) to coefficients in the perturba-
tive expansions of the anomalous dimensions and the QCD
β-function. At one-loop order we have

c1(L) = −
ΓA

0

4
L2 −

γS
0

2
L + CA

π2

6
, (7)

where ΓA
0 = 4CA and γS

0 = 0.
The Wilson coefficient at space-like momentum transfer

has a well behaved expansion in powers of the coupling
constant, if the renormalization scale is taken to be of order
the natural scale, µ2 ∼ Q2. For instance, with Nc = 3
colors and nf = 5 light quark flavors, we find

CS(Q2, Q2) = 1 + 0.393 αs(Q
2)− 0.152 α2

s(Q
2) + . . . . (8)

The nature of the expansion changes drastically when the
same coefficient is evaluated at time-like momentum trans-
fer Q2 = −q2 − iε. We then obtain

CS(−q2, q2) = 1 + 2.75 αs(q
2) + (4.84 + 2.07i)α2

s(q
2)

+ . . . . (9)

The expansion coefficients are more than an order of mag-
nitude larger than in the space-like region. The origin of
this effect is that the Sudakov (double) logarithms con-
tained in the coefficients cn(L) in (3) give rise to π2 terms
when we analytically continue L → ln(q2/µ2)− iπ. For the
hard function entering the Higgs-boson production cross
section, this implies

H(m2
H , m2

H) = 1 + 5.50αs(m
2
H) + 17.24α2

s(m
2
H) + . . .

= 1 + 0.623 + 0.221 + . . . , (10)

where the numerical estimates in the last line refer to the
NLO and NNLO corrections for a Higgs-boson mass of
120GeV, and we use αs(m2

Z) = 0.118 as our normalization
of the running coupling constant. These hard matching
corrections account for the bulk of the K-factors found at
NLO and NNLO.

The large expansion coefficients in the perturbative se-
ries for the Wilson coefficient in the time-like region can be
avoided if we evaluate this coefficient at a time-like renor-
malization point, in which case (here and below, negative

arguments of the running coupling are always understood
with a −iε prescription)

CS(−q2,−µ2) = 1 +
∞
∑

n=1

cn(L)

(

αs(−µ2)

4π

)n

(11)

with L = ln(q2/µ2) and the same expansion coefficients as
in (3). We then obtain

CS(−q2,−q2) = 1 + 0.393 αs(−q2) − 0.152 α2
s(−q2) + . . .

(12)
instead of (9). The perturbative series analogous to that
in (10) reads

|CS(−m2
H ,−m2

H)|2 = 1 + 0.0845− 0.0015 + . . . , (13)

which indeed exhibits a vastly better behavior.
In the expressions above, the running coupling is evalu-

ated at time-like momentum transfer −µ2 − iε. The func-
tion αs(µ2) in perturbation theory is analytic in the com-
plex µ2 plane with a (physical) cut on the negative real
axis and a (unphysical) Landau pole at µ2 = Λ2

MS
. Since

we are interested in very large |µ2| values, the Landau pole
is not of concern to our discussion. The definition

β(αs) = 2
dαs(µ2)

d lnµ2
= −2αs

∞
∑

n=0

βn

(αs

4π

)n

(14)

of the QCD β-function implies that
∫ αs(−µ2)

αs(µ2)

dα

β(α)
= −

iπ

2
, (15)

and this relation allows us to define the running coupling
at time-like argument in terms of that at space-like mo-
mentum transfer. At NLO we obtain

αs(µ2)

αs(−µ2)
= 1−ia(µ2)+

β1

β0

αs(µ2)

4π
ln

[

1 − ia(µ2)
]

+O(α2
s) ,

(16)
where a(µ2) = β0αs(µ2)/4. In standard applications of
the renormalization group one would count this quantity
as an O(1) parameter. Since numerically a(m2

H) ≈ 0.2, it
is however also reasonable to count a = O(αs).

III. RESUMMATION

What is needed for the calculation of the Higgs-boson
production cross section is the Wilson coefficient at posi-
tive, not negative µ2, see (5). We will use the solution to
the renormalization-group equation (6) to relate this coef-
ficient to the one in (11). In that way the large corrections
arising in the time-like region are resummed to all orders
in perturbation theory. We write the solution in the form

H(m2
H , µ2) = U(m2

H , µ2) |CS(−m2
H ,−µ2)|2 , (17)

where [19]

lnU(m2
H , µ2) = 2 Re

[

2S(−µ2, µ2) − aγS (−µ2, µ2)

− aΓ(−µ2, µ2) ln
m2

H

µ2

]

, (18)

2
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which indeed exhibits a vastly better behavior.
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β(αs) = 2
dαs(µ2)

d lnµ2
= −2αs

∞
∑

n=0

βn

(αs

4π

)n

(14)

of the QCD β-function implies that
∫ αs(−µ2)

αs(µ2)

dα

β(α)
= −

iπ

2
, (15)

and this relation allows us to define the running coupling
at time-like argument in terms of that at space-like mo-
mentum transfer. At NLO we obtain

αs(µ2)

αs(−µ2)
= 1−ia(µ2)+

β1

β0

αs(µ2)

4π
ln

[

1 − ia(µ2)
]

+O(α2
s) ,

(16)
where a(µ2) = β0αs(µ2)/4. In standard applications of
the renormalization group one would count this quantity
as an O(1) parameter. Since numerically a(m2

H) ≈ 0.2, it
is however also reasonable to count a = O(αs).

III. RESUMMATION

What is needed for the calculation of the Higgs-boson
production cross section is the Wilson coefficient at posi-
tive, not negative µ2, see (5). We will use the solution to
the renormalization-group equation (6) to relate this coef-
ficient to the one in (11). In that way the large corrections
arising in the time-like region are resummed to all orders
in perturbation theory. We write the solution in the form

H(m2
H , µ2) = U(m2

H , µ2) |CS(−m2
H ,−µ2)|2 , (17)

where [19]

lnU(m2
H , µ2) = 2 Re

[

2S(−µ2, µ2) − aγS (−µ2, µ2)

− aΓ(−µ2, µ2) ln
m2

H

µ2

]

, (18)

CS(Q2, Q2)

�s(µ2) µ2

�2
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• Convergence is much better for 

• Evaluate H for              where convergence is good 
and use RG to evolve to  arbitrary scale
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Results, scale variation

MSTW2008NNLO

MSTW2008NLO

MSTW2008LO

fixed order

√
s = 1.96 TeV

mH (GeV)

σ
(p

b
)

200180160140120100

2.5

2

1.5

1

0.5

0

MSTW2008NNLO

MSTW2008NLO

MSTW2008LO

resummed

√
s = 1.96 TeV

mH (GeV)

σ
(p

b
)

200180160140120100

2.5

2

1.5

1

0.5

0

MSTW2008NNLO

MSTW2008NLO

MSTW2008LO

fixed order

√
s = 14 TeV

mH (GeV)

σ
(p

b
)

200180160140120100

90

80

70

60

50

40

30

20

10

0

MSTW2008NNLO

MSTW2008NLO
MSTW2008LO

resummed

√
s = 14 TeV

mH (GeV)

σ
(p

b
)

200180160140120100

90

80

70

60

50

40

30

20

10

0

Figure 6: The fixed-order (left) and RG-improved (right) cross-section predictions including
perturbative uncertainty bands due to scale variations for the Tevatron (upper) and LHC
(lower plots). In contrast to Figure 5, different PDF sets are used according to the order of
the calculation.

after RG improvement are fully contained in the lower-order ones and the K-factor is close
to 1, in particular for the LHC.1 In fixed-order calculations it is customary to use PDFs ex-
tracted from a fit using predictions of the same order. Doing so absorbs universal higher-order
corrections into the PDFs. Since resummed calculations contain contributions of arbitrarily
high orders, the optimal PDF choice is less clear. If the same large higher-order corrections
affect both the observable one tries to predict and the cross sections used to extract the PDFs,
it would be quite problematic to perform a resummation in one case and not the other. For
our case, the relevant input quantity is the gluon PDF at low x, which is mostly determined
by measurements of scaling violations in the DIS structure function, ∂F2(x, Q2)/∂Q2. The
higher-order corrections associated with the analytic continuation of the time-like gluon form
factor, which we resum, do not affect the DIS cross section, and so are not universal and

1For MRST2004 PDFs [52], the K-factors after resummation are somewhat larger, K ≈ 1.3 for the LHC,
see [18].

18

no large K-factor!
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Update with EW corrections
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Figure 1: Cross sections at the Tevatron for
√
s = 1.96 TeV and the LHC for

√
s = 7, 10,

14 TeV. Bands indicate scale uncertainties. Light, medium and dark bands represent LO
(NLL), NLO (NNLL) and NNLO (N3LL) in RG-improved perturbation theory, respectively.

for download1.
In [28], the authors have also updated their predictions for Higgs production via gluon

fusion combining soft gluon resummation and two-loop electroweak corrections. Our results
differ in several important aspects from theirs:

• We work at N3LL accuracy rather than NNLL.

• We resum the enhanced contributions arising from the analytic continuation of the gluon
form factor. This has been demonstrated to greatly improve the perturbative conver-
gence.

• We work directly in momentum space rather than in Mellin moment space, which avoids
the Landau pole ambiguity.

1http://projects.hepforge.org/rghiggs/

4
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Conclusions
• Higgs production cross section is not 

strongly dominated by partonic threshold.

• Significant scheme dependence in soft-
gluon resummation. 

•  Large corrections in hard function

• Much better convergence if it is evaluated 
for space-like kinematics, setting µ2 =- MH2   

• Both soft-gluon and π2 resummation 
increase cross section.  
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Extra
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Resummation by RG evolution

• Evaluate each part at its characteristic scale, 
evolve to common scale:

m2
H

�m2
H

0

m2
t

µ2

ffgg(⇥/z, µf )

S(ŝ(1� z), µ2
s)

H(m2
H , µ2

h)

Ct(m2
t , µ

2
t )

µ2
f
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Traditional soft-gluon resummation

Figure 6: Scale dependence of the Higgs production cross section at the LHC for MH = 115 GeV
at a) (upper) LO, NLO, NNLO and b) (lower) LL, NLL, NNLL accuracy.

As expected from the QCD running of αS, the cross sections typically decrease when µR

increases around the characteristic hard scale MH , at fixed µF = MH . In the case of variations
of µF at fixed µR = MH , we observe the opposite behaviour. In fact, when MH = 115 GeV,
the cross sections are mainly sensitive to partons with momentum fraction x ∼ 10−2, and in
this x-range scaling violation of the parton densities is (moderately) positive. Varying the two
scales simultaneously (µF = µR) leads to a compensation of the two different behaviours. As a
result, the scale dependence is mostly driven by the renormalization scale, because the lowest-order
contribution to the process is proportional to α2

S, a (relatively) high power of αS.

Figure 6a shows that the scale dependence is reduced when higher-order corrections are in-
cluded. When resummation effects are implemented (Fig. 6b), we typically observe a further
(slight) reduction of the scale dependence, with the exception of the factorization-scale depen-
dence at fixed µR = MH that is marginally stronger after resummation. This suggests that the
rather flat dependence on µF at NNLO can be an accidental effect, as also suggested by the fact
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Catani, de Florian, Grazzini, Nason ’03
numerical update: de Florian and Grazzini ’09
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Beam thrust as jet veto

• Small uncertainties of fixed-order calculation are 
misleading, arise from cancellation of large hard 
and collinear corrections.
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Figure 15. Comparison of the NNLL+NNLO result for the Higgs production cross section as a
function of T cut

cm to the fixed NNLO result for the Tevatron. The bands show the perturbative scale
uncertainties. The left plot shows the cumulant cross section. The right plot shows the same informa-
tion as percent difference relative to the NNLL+NNLO central value.
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Figure 16. Same as figure 15 but for the LHC with Ecm = 7TeV.
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Figure 17. Same as the left panels of figures 15 and 16 but plotted up to T cut
cm = mH .
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