

D UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Soft-gluon resummation for *H*-production: Methods and results

V. Ahrens, TB, M. Neubert, L. L. Yang: 0808.3008 (PRD), 0809.4283 (EPJC), 1008.3162 (PLB)

Thomas Becher

Zürich Phenomenology Workshop, 10.1. 2012

I will discuss soft-gluon resummation for the Higgs total cross section. Different methods

- based on the same factorization formula,
- with same N³LL+NNLO accuracy,

can give fairly (~ 5-10%) different cross sections.

Different choices of

- expansion parameters,
- scale setting prescriptions

Each Higgs production also comes with different relative uncertainties

At LHC

Source	Affected Processes		Typical uncertainty
$PDFs + \alpha_s$ (cross sections)	$\begin{array}{c} gg \to H, t\bar{t}H, gg \to VV \\ \text{VBF } H, VH, VV @ \text{NLO} \end{array}$		$\pm 8\%$ $\pm 4\%$
Higher-order uncertainties on cross sections	total inclusive $gg \rightarrow H$ inclusive " gg " $\rightarrow H + \geq 1$ jets inclusive " gg " $\rightarrow H + \geq 2$ jets VBF H associated VH $t\bar{t}H$ uncertaintice specific to high mass	Correlated between all channels and each experiment	$\begin{array}{r} +12 \% \\ -7 \% \\ \pm 20 \% \\ \pm 20 \% \\ \pm 20\% \text{ (NLO), } \pm 70\% \text{ (LO)} \\ \pm 1 \% \\ \pm 1 \% \\ +4 \% \\ -10 \% \\ \pm 30\% \end{array}$
gg → H un QCD rad	certainties are largest of interview of the second	despite tremendous	set of calculations
gg → H un QCD rad QCD cor	certainties are largest o <u>iative corrections at NLO</u> rections NNLO	despite tremendous	set of calculations

State of the art predictions

Fixed order:

Anastasiou, Bühler, Herzog, Lazopoulos, 1107.0683 http://www.phys.ethz.ch/~pheno/ihixs/

Resummed:

de Florian, Grazzini, 0901.2427

http://theory.fi.infn.it/grazzini/hcalculators.html

Ahrens, TB, Neubert, Yang, 1008.3162 http://projects.hepforge.org/rghiggs/

\varTheta 🕙 🔿 Termin	al — bash — 70×4	42	\sim				
<pre>becher:~/Documents/Software/RGHiggs-1.1> ./RunHiggs.py 7000 125(MSTW) ************************************</pre>							
Higgs production at the LHC in NNLO RG-improved QCD							
Using MSTW PDF sets PDF unc. for MSTW,			c. for MSTW,				
sqrtS = 7000. GeV m_H = 125.0 GeV		CT10, CTEQ and NNPDF					
Cross sections with scale uncertainties (pb)							
Fixed order:	13.443	+1.431	-1.373	- 11			
Fixed order (+ EW:)	14.135	+1.504	-1.443	- 11			
Only threshold resummed:	13.834	+0.703	-0.171	- 11			
Only pi^2 resummed:	14.618	+0.549	-0.636	- 11			
Threshold+pi^2 resummed:	14.679	+0.415	-0.112	- 11			
Threshold+pi^2 resummed + EW:	15.434	+0.436	-0.118				
Cross sections with PDF+alpha_s uncertainties (pb)							
Fixed order:	13.443	+1.001	-0.968				
Fixed order + EW:	14.135	+1.053	-1.018				
Only threshold resummed:	13.834	+1.051	-1.014				
Only pi^2 resummed:	14.618	+1.166	-1.118				
Threshold+pi^2 resummed:	14.679	+1.172	-1.124				
Threshold+pi^2 resummed + EW:	15.434	+1.232	-1.182				
becher:~/Documents/Software/RGHiggs-1.1> run time is ~1.5 min							

Results for the cross section

	σ [pb]	scale unc. $\Delta\sigma$ [%]
iHixs	15.37	+9/-8
deFG	15.40	+7/-8
RGHiggs	15.43	+3/-1

for *m_H*=125 GeV, LHC 7TeV, *m_t*=173.1 GeV, *m_b*=4.2 GeV

- Based on MSTW08NNLO.
 - $\pm 8 \% PDF + \alpha_s$ uncertainty @ 90% CL
 - $\pm 4 \% PDF + \alpha_s$ uncertainty @ 68% CL
 - PDF4LHC prescription gives +8/-7% unc.
- Numerically, there is excellent agreement for σ .

Differences

Several differences in resummed results hide behind the numerical agreement:

- We find that soft-gluon resummation alone increases cross section by 3%, dFG find 8%.
 More than a factor of 2 difference in the resummation itself!
- Use different treatment of hard function gives (" π^2 resummation"), yields 9% increase.
 - once this is done, soft-gluon resummation itself becomes negligible
- iHixs uses $\mu = M_H/2$: σ is 10% larger than at $\mu = M_H$.

Common issues in soft-gluon resummation

Common first step: integrate out the top

For $m_H \ll 2m_t$ we can integrate out the top quark, i.e. replace the SM by an effective theory with $n_f = 5$.

Calculations in EFT are much simpler. One loop and one scale less. NNLO results only available in EFT.

 C_t known to NNNLO, excellent convergence. Power corrections $(m_H/m_t)^2$ are small for light Higgs.

Common: factorization theorem

Scale of soft radiation is lower than m_H : large (?) pert. logarithms.

Parton Luminosity

Fall-off is not very strong. Will find typical scale of radiation is of order $M_H/2$.

Threshold dominance?

$$\sigma \approx \sigma_{\text{Born}} \int_0^1 dz \, z^{a-1} \, C(z, m_t, m_H, \mu_f); \qquad \sigma_{\text{Born}} = \sigma_0 \, f_{gg}(\tau, \mu_f) \,,$$

At $z = \tau = M_H^2/s \sim 0.0003$ the fall off is *a*=2.5.

 \rightarrow Threshold region is *not* strongly enhanced.

Moment space

Bonvini, Forte Ridolphi 1009.5691

Same picture: typical moment is second moment of cross section. (Note: Plot is for Drell-Yan not Higgs.)

Upshot

- For Higgs at LHC, harder emissions are not strongly suppressed by PDFs.
- Expansion around soft limit has an expansion parameter ~1/2
 - Exact choice of expansion parameter (or space in which expansion is performed) matters.
 - Relatively strong scheme depenence.

Differences

- 1. Integral transform / choice of sing. distribution
 - a. Mellin moments
 - b. Laplace transform (in E_s)
- 2. Scale setting for soft emissions
 - a. on the partonic level
 - b. on the hadronic level
- 3. Evaluation of for the hard function
 - a. time-like
 - b. space-like

de Florian and Grazzini

Ahrens, TB, Neubert, Yang

Soft emissions

$$\sigma(\tau) = \sigma_0(\mu_f) \int_{\tau}^1 \frac{dz}{z} C_{gg}(z, m_t, m_H, \mu_f) ff_{gg}(\tau/z, \mu_f)$$

Soft emissions give rise to singular distributions in partonic cross section C_{gg} . $2E_s(z)$ M_H

$$\begin{bmatrix} \frac{\ln^n(1-z)}{1-z} \end{bmatrix}_{+} \quad \text{or} \quad \begin{bmatrix} \frac{1}{1-z} \ln^n\left(\frac{1-z}{\sqrt{z}}\right) \end{bmatrix}_{+}$$

Resummation will predicts singular distribution terms to all orders.

Integral transform

To perform the resummation one takes the Laplace or Mellin moment transform of the cross section.

$$\mathcal{L}_N[f(\xi)] \equiv \int_0^\infty d\xi \, e^{-\xi N} \, f(\xi) \,,$$

$$\mathcal{M}_N[f(\xi)] \equiv \int_0^1 d\xi \, (1-\xi)^{N-1} f(\xi) \,,$$

- In SCET, we solve RG in Laplace space and then invert analytically.
- Traditional resummation performed in moment space. Numerical inversion at the end.

Singular terms from Mellin inversion

Threshold z = 1 corresponds to expansion around $N \rightarrow \infty$. Mellin and Laplace space results are the same after expansion.

Difference arises in the inverse transform:

Relation

$$-\ln z = \frac{1-z}{\sqrt{z}} + \mathcal{O}\left[(1-z)^3\right]$$

The main difference between the two approaches is a factor of \sqrt{z} :

Singular terms to N³LO

numerical results from L.L. Yang

	LO	NLO	NNLO	NNNLO
full	5.08	6.50	4.05	?
Laplace	5.08	4.86	1.82	-0.65
Laplace Es	5.08	5.56	3.13	0.430
Mellin	5.08	6.25	4.05	0.942

Factor of 2 difference!

- Large differences among schemes.
- The singular pieces in the Mellin approach are close to the full result.

2. Difference: choice of soft scale $\int_{\tau}^{1} S(\sqrt{\hat{s}}(1-z),\mu) ff_{gg}(\tau/z,\mu)$

Appropriate scale μ is the soft radiation? Can set scale either at

(a) partonic level: set $\mu = \sqrt{\hat{s}(1-z)}$. Need prescription for Landau pole.

(b) hadronic level: set μ to average energy of soft radiation, determined numerically. Result $\mu \sim M_H/2$.

Numerically, the two prescriptions give similar result [(b) yields 20-50% larger N³LO.]

3. Choice of the hard scale

- Hard function is scale dependent.
- Large corrections for any μ^2 !?!

Scalar form factor

- Hard function $H(m_H^2, \mu^2) = |C_S(-m_H^2 i\epsilon, \mu^2)|^2$
- Scalar form factor

$$C_{S}(Q^{2},\mu^{2}) = 1 + \sum_{n=1}^{\infty} c_{n}(L) \left(\frac{\alpha_{s}(\mu^{2})}{4\pi}\right)^{n}, \quad L = \ln(Q^{2}/\mu^{2})$$

$$c_{1}(L) = C_{A} \left(-L^{2} + \frac{\pi^{2}}{6}\right)$$
Sudakov double logarithm

• Perturbative expansions space-like $C_S(Q^2, Q^2) = 1 + 0.393 \alpha_s(Q^2) - 0.152 \alpha_s^2(Q^2) + ...$ time-like $C_S(-q^2, q^2) = 1 + 2.75 \alpha_s(q^2) + (4.84 + 2.07i) \alpha_s^2(q^2)$

Solution

- Reason: $L \to \ln q^2/\mu^2 i\pi$ and double log's give rise to π^2 terms. Parisi '80
 - Being related to Sudakov logs, they can be resummed. Magnea and Sterman and '90
- We can avoid the π^2 terms by choosing a time-like value $\;\mu^2=-q^2\;$

 $C_S(-q^2, -q^2) = 1 + 0.393 \,\alpha_s(-q^2) - 0.152 \,\alpha_s^2(-q^2) + \dots$

- same expansion coefficients as $C_S(Q^2, Q^2)$
- Note: RG-evolution defines $\alpha_s(\mu^2)$ for any μ^2

Time-like vs. space-like μ^2

- Convergence is much better for $\mu^2 < 0$
- Evaluate H for $\mu^2 < 0$ where convergence is good and use RG to evolve to arbitrary scale

Results, scale variation

Update with EW corrections

Conclusions

- Higgs production cross section is not strongly dominated by partonic threshold.
 - Significant scheme dependence in softgluon resummation.
- Large corrections in hard function
 - Much better convergence if it is evaluated for space-like kinematics, setting $\mu^2 = -M_H^2$
- Both soft-gluon and π² resummation increase cross section.

Extra

Resummation by RG evolution

• Evaluate each part at its characteristic scale, evolve to common scale:

Traditional soft-gluon resummation

Beam thrust as jet veto

Berger, Marcantonini, Stewart, Tackmann and Waalewijn 'I I

 Small uncertainties of fixed-order calculation are misleading, arise from cancellation of large hard and collinear corrections.