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Now that the theoretical problem of matching has been solved,

the question is not academic

� Tree-level matrix element generators (Alpgen, MadEvent) plus

multi-parton merging techniques (CKKW, CKKW-L, MLM) and parton

shower MCs do a very good job from the phenomenology viewpoint

� Extraction of parameters from data can be done at the parton level.

This is less direct and sometimes requires ingenuity, but is cleaner,

and can be pushed to NNLO



Before giving my answer to the question, let me mention that some of the

typical motivations given by theorists, e.g.:

I better description of jet structure;

I extra contributions from initial-state partons (e.g., qg vs qq̄);

I “NLO” effects on distributions (e.g., kinematics-dependent K factors);

are actually motivations for tree-level calculations (beyond LO) —

that is, genuine NLO effects are not an issue



NLOwPS: why bother?

It is likely a very good idea to use NLOwPS’s if at least one of

the following conditions is fulfilled:

� Multivariate analyses (BDT, NN, likelihood) are essential,

i.e. cut-based ones are not an option

� Lots of backgrounds, (some of which) difficult to tune to data

� Overstretching predictions is highly risky

In general: when experimental results may have a significant theory bias



This boils down to saying that the really crucial thing is:

I Precision: NLO is the first order at which the assessment of theoretical

uncertainties is meaningful. NLOwPS’s allow one to use this

information in all aspects of an experimental analysis
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I Precision: NLO is the first order at which the assessment of theoretical

uncertainties is meaningful. NLOwPS’s allow one to use this

information in all aspects of an experimental analysis

A couple of very non-trivial aspects:

I b-tagging: same as in experiments, for processes where the use of NLO

results is desirable (note: b-tagging at parton level is very tricky)

I Behaviour of “extra” jet – perturbative or not. Typical application:

jet-veto systematics



The case for the use of NLOwPS’s in Higgs searches is serious,

but not compelling

� The gain (wrt LO-based procedures) largely depends on the particular

analysis and experimental setup – only experiments are qualified to

assess it

� Discovery must be made regardless of NLOwPS’s which, on the other

hand, can be helpful to get there faster, and to give extra confidence



The case for the use of NLOwPS’s in Higgs searches is serious,

but not compelling

� The gain (wrt LO-based procedures) largely depends on the particular

analysis and experimental setup – only experiments are qualified to

assess it

� Discovery must be made regardless of NLOwPS’s which, on the other

hand, can be helpful to get there faster, and to give extra confidence

Bottom line: do use NLOwPS’s, but design analyses

as if they were not available (which is what is being done)

NLOwPS will be relatively more important in the determination of Higgs

properties (e.g., couplings from tt̄H and VBF processes)



Construction of standalone MC

The generating functional collects all “shower histories” (i.e. kinematic

configurations weighted with their probabilities)

FMC = F (2→n)M(b)(φn)dφn

The individual showers emerging from the 2 + n partons obey:

F(tI) = ∆(tI, t0) +

∫

tI

t0

dt

t
∆(tI, t)

∫

dz
αS

2π
P (z)F((1 − z)2t)F(z2t)

with parton types understood. When t = θ2E2 one has angular ordering.

The Sudakov form factor is

∆(tI, t0) = exp

(

−

∫

tI

t0

dt

t

∫

dz
αS

2π
P (z)

)

MCs differ in the choice of shower variables (t and z)



Construction of MC@NLO

FMC@NLO = F (2→n+1) dσ
(H)
MC@NLO + F (2→n) dσ

(S)
MC@NLO

with the two finite short-distance cross sections

dσ
(H)
MC@NLO = dφn+1

(

M(r)(φn+1) −M(MC)(φn+1)
)

dσ
(S)
MC@NLO =

∫

+1

dφn+1

(

M(b+v+rem)(φn) −M(c.t.)(φn+1) + M(MC)(φn+1)
)

that feature the MC subtraction terms

M(MC) = F (2→n)M(b) + O(α2
S
αb

S
)

MC subtraction terms are process independent, by MC-dependent
(i.e., those for matching with Herwig and Pythia are different)



Construction of POWHEG

Use the exact phase-space factorization dφn+1 = dφndφr, and construct

M
(b)

(φn) = M(b+v+rem)(φn) +

∫

dφr

[

M(r)(φn+1) −M(c.t.)(φn+1)
]

For a given pT , define the (process-dependent) vetoed Sudakov

∆R(tI , t0; pT ) = exp

[

−

∫ tI

t0

dφ′

r

M(r)

M(b)
Θ(kT (φ′

r) − pT )

]

The short-distance cross section is:

dσPOWHEG = dφnM
(b)

(φn)

[

∆R(tI , t0; 0) + ∆R(tI , t0; kT (φr))
M(r)(φn+1)

M(b)(φn)
dφr

]

I First term (S-type events) strongly suppressed

I kT (φr) will play the role of hardest emission so far (H-type events)



Attaching (angular-ordered) showers

I One wants the matrix-element-generated pT to be the hardest

=⇒ veto emissions harder than pT during shower

I But this screws up colour coherence

Colour coherence can be restored at the price of a more involved structure

FPOWHEG[tI ; pT ] = ∆(tI , t0) +

∫ tI

t0

dt

t

∫

dz∆R(tI , t; pT )
αS

2π
P (z)

×FV((1 − z)2t; pT ) FV(z
2t; pT ) FVT(tI , t; pT )

I FV(t; pT ) are vetoed showers. Evolve down to t0, with all emissions

constrained to have a transverse momentum smaller than pT

I FVT(tI, t; pT ) are vetoed-truncated showers. Evolve from tI down to t

(i.e., not t0) along the hardest line. On top of that, they are vetoed



To reduce the impact of the exponentiation of the full real matrix element,
one introduces the following variant

dσ(damp)

POWHEG = dφnM
(b)

S

{

∆S

R

M
(r)
S

M(b)
+ M

(r)
F

}

dφr

with:

M(r) = M
(r)
S

+ M
(r)
F

= F (pT )M(r) + (1 − F (pT ))M(r)

(1 − F (pT ))M(r) −→ finite pT −→ 0

To maintain the NLO accuracy, one must define:

M
(b)

S = M
(b)

(

M(r) −→ M
(r)
S

)

∆S

R = ∆R

(

M(r) −→ M
(r)
S

)
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S
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� The differences of matrix-element origin are due to

I Exponentiation of real matrix elements

I Use of M
(b)

, which “moves” the pT = 0 K factor to pT > 0

before showering

The two things are related, because of the necessity of

maintaining the NLO accuracy
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Features

MC@NLO = POWHEG + O(α2
S
αb

S
) + logs (with or without damp)

� The differences of matrix-element origin are due to

I Exponentiation of real matrix elements

I Use of M
(b)

, which “moves” the pT = 0 K factor to pT > 0

before showering

The two things are related, because of the necessity of

maintaining the NLO accuracy

� The logarithmic structure is different owing to the treatment of the first

emission in POWHEG wrt standalone MCs

These differences are generally small (for inclusive variables at least).
gg → H is a spectacular counterexample



pT(H) in gg → H
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Note: matrix elements in MC@NLO (and POWHEG) are up to O(α3
S
),

in HqT up to O(α4
S
). MC@NLO and HqT compatible within theory

uncertainty
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The POWHEG tail is more than a factor of two higher than the

MC@NLO one
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Use of F (pT ) 6= 1 brings the POWHEG curve significantly down.

Note that this is formally an O(α4
S
) effect



y(H) − y(j1) in gg → H

Hamilton, Richardson, Tully

When showering POWHEG events with HW6, there is basically no dip

at ∆y = 0. An effect of the missing truncated-vetoed shower in HW6?



y(H) − y(j1) in gg → H

plots: P. Torrielli, R. Frederix

Left: very large dependence on MC used

Right: very sensitive to short-distance production mechanism



Some final considerations on y(H) − y(j1)

� The dip is not an MC@NLO feature, but an MC one.

� MC@NLO “fills” the original MC dip via H events, whose effect is

largely MC-independent. Hence, the pattern of the dips in the original

MCs will be loosely respected by MC@NLO

� One may argue that this has to be expected, since y(H) − y(j1) is

effectively LO, and the use of H + 1 parton NLO calculation is

necessary here

� I find that this argument is based on the prejudice that the dip should

not be there. However, the large MC-dependence may suggest that a

matrix-element-based description is not suited

� A more solid solution will be available when H + 0 and H + 1 parton

results will be consistently merged (a la CKKW or MLM)



Higgs phenomenology: status

� SM Higgs signals (gg, VBF, V H, tt̄H) are available in both MC@NLO

and POWHEG (VBF in MC@NLO not public yet). BSM scenarios have been

considered (e.g., tH±), but not systematically
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Higgs phenomenology: status

� SM Higgs signals (gg, VBF, V H, tt̄H) are available in both MC@NLO

and POWHEG (VBF in MC@NLO not public yet). BSM scenarios have been

considered (e.g., tH±), but not systematically

� Background implementations are not as complete. Some exist

(e.g., dibosons), some others don’t (e.g., Zjj, tt̄jj)

The situation will rapidly improve, thanks to a very recent, and extremely

significant, achievement: automation

Note that there are two levels of automation involved: that of the NLO

matrix element computation, and that of the NLO-MC matching



Automation

I aMC@NLO (Frederix, Frixione, Hirschi, Pittau, Maltoni, Torrielli): automation of

matrix elements and MC@NLO matching in the same framework

I SHERPA (Krauss, Höche, Siegert, Schönherr): automation of matrix

elements (except virtuals) and matching (both MC@NLO and POWHEG)

in the same framework

I POWHEL (Papadopoulos, Garzelli, Kardos, Trocsanyi; +· · ·): automation of

matrix elements, POWHEG matching via POWHEG-box (Alioli, Nason,

Oleari, Re)

No systematic comparison among these codes has been performed yet, and thus I’m

unable to comment on the extent of automation/flexibility of the packages I’m not

involved in. I suppose the dust will settle soon



plot: F. Maltoni

Each of the processes listed here would have cost years of work with

traditional methods



Theory uncertainties: (a)MC@NLO

Key point: the dependences on coupling constants, logarithms of scales,

and PDFs is linear in the short-distance MC@NLO cross section

=⇒ Define scale- and PDF-independent coefficients, and use them to

compute scale and PDF uncertainties by reweighting

This has zero CPU cost! All aMC@NLO event samples include by default

these reweighting coefficients (see 1110.4738)

Note: this is at the short-distance cross section level. The interplay

with choices made in the MC is an open issue, which is being studied

(Webber, SF)



Examples

pp −→ (W →)`ν`jj
pp −→ (Z/γ∗→)`+`−bb̄

/

(W →)`ν`bb̄

Thanks to reweighting, events for central predictions and their variations
are correlated. One thus gets a fairly smooth uncertainty band



Theory uncertainties: POWHEG

I Cannot change scales in ∆R without spoiling logarithmic accuracy

I Scale dependence of M
(b)

is standard. However, its role in the

POWHEG formula implies that the shape of the first emission is

independent of scales (i.e., dσ/dpT (H) for any pT (H) > 0 has the same

scale uncertainty as the total rate)

I The above is not correct if one uses the damp version (owing to M
(r)
F

).

However, this exposes the fact that it is also necessary to study the

systematics due to the choice of F (pT ) (see pT (H) in gg → H)

All this is being considered (Hamilton, Nason)

I don’t know whether reweighting techniques are viable, and am not aware

of general approaches to PDF systematics



Outlook

Automation is allowing one to extend the scope of NLOwPS’s much further

than previously thought possible

Topics of particular interest for Higgs physics (but not limited to it) include:

� NLO in the extra jet (e.g., VBF+1j, Wbb̄j)

� Inclusion of exact corrections to top decays (e.g. for tt̄H and tt̄bb̄)

� Comparison between NLOwPS’s and NNLO results

(vast expertise in the ZH area...)

� Extension of merging techniques (CKKW, MLM) to NLOwPS’s


