Flavour Physics and Recent Results from the LHCb Experiment

The Zürich Phenomenology Workshop Higgs search confronts theory Zürich, Switzerland, 9-11 January 2012

> T. Nakada EPFL-LPHE Lausanne, Switzerland

Evolution of Flavour physics (I)

• Quark flavour physics, has been successfully uncovering physics at much higher scale than directly accessible, e.g. quark family structure and 3rd generation of quark family. Using the quantum fluctuations in the loop diagram

$$\begin{array}{c|c} s \\ \hline b \\ \hline V - A \\ \hline d, s \end{array}$$

Examples

- $\Delta m_{\rm K}$ and ${\rm Br}({\rm K}_{\rm L} \rightarrow \mu^+ \mu^-) \Rightarrow m_{\rm c}$ Lee&Gaillard (1974) charm discovery Aubert et al., Augustin et al., 1974 (Niu et al. 1971?)
- CP: 1964, J.H. Christenson et al., Br(K⁰_L→π⁺π⁻) ≠ 0
 ⇒ Third family Kobayashi&Maskawa (1973)
- $B^0-\overline{B}^0$ oscillations (Δm_B): ARGUS (1987) $\Rightarrow m_t > 50 \text{ GeV}/c^2$ (NB: UA1 1984 20 $< m_t < 50 \text{ GeV}/c^2$) top discovery by CDF and D0 in 1995 ($m_t = 171.2\pm 2.1 \text{ GeV}/c^2$)
- They were done before the direct discovery of c, b and t quarks
- Establishing the KM phase as the major source of CP violation
- Flavour Physics made crucial contributions to establish the flavour structure of the SM

First charm?

Prog. Theor. Phys. Vol. 46 (1971), No. 5

A Possible Decay in Flight of a New Type Particle

Kiyoshi NIU, Eiko MIKUMO and Yasuko MAEDA* Institute for Nuclear Study University of Tokyo *Yokohama National University

August 9, 1971

1971emulsion exposed in
a JAL Jet cargo planeone event of
 $X \rightarrow \pi^0$ + one charged hadronhypo. $\pi^0 \pi^{charged}$ $\pi^0 p$

$\tau(s)$	2.2×10^{-14}	3.6×10^{-14}
m(GeV)	1.78	2.95

Possibly, the first observation of $D \rightarrow K\pi^0$ decay in 1971

Examples

- $\Delta m_{\rm K}$ and ${\rm Br}({\rm K}_{\rm L} \rightarrow \mu^+ \mu^-) \Rightarrow m_{\rm c}$ Lee&Gaillard (1974) charm discovery Aubert et al., Augustin et al., 1974 (Niu et al. 1971?)
- CP: 1964, J.H. Christenson et al., Br(K⁰_L→π⁺π⁻) ≠ 0
 ⇒ Third family Kobayashi&Maskawa (1973)
- $B^0-\overline{B}^0$ oscillations (Δm_B): ARGUS (1987) $\Rightarrow m_t > 50 \text{ GeV}/c^2$ (NB: UA1 1984 20 $< m_t < 50 \text{ GeV}/c^2$) top discovery by CDF and D0 in 1995 ($m_t = 171.2\pm 2.1 \text{ GeV}/c^2$)
- They were done before the direct discovery of c, b and t quarks
- Establishing the KM phase as the major source of CP violation
- Flavour Physics made crucial contributions to establish the flavour structure of the SM

Examples

- $\Delta m_{\rm K}$ and ${\rm Br}({\rm K}_{\rm L} \rightarrow \mu^+ \mu^-) \Rightarrow m_{\rm c}$ Lee&Gaillard (1974) charm discovery Aubert et al., Augustin et al., 1974 (Niu et al. 1971?)
- CP: 1964, J.H. Christenson et al., Br(K⁰_L→π⁺π⁻) ≠ 0
 ⇒ Third family Kobayashi&Maskawa (1973)
- $B^0-\overline{B}^0$ oscillations (Δm_B): ARGUS (1987) $\Rightarrow m_t > 50 \text{ GeV}/c^2$ (NB: UA1 1984 20 $< m_t < 50 \text{ GeV}/c^2$) top discovery by CDF and D0 in 1995 ($m_t = 171.2\pm 2.1 \text{ GeV}/c^2$)
- They were done before the direct discovery of c, b and t quarks
- Establishing the KM phase as the major source of CP violation
- Flavour Physics made crucial contributions to establish the flavour structure of the SM

CPV within the SM framework?

- In 2001
 - Superweak model ruled out by $\operatorname{Re}(\varepsilon'/\varepsilon) \neq 0$ in K⁰
 - CPV in $B \rightarrow J/\psi K_S$ is in very good agreement with the SM prediction

Examples

- $\Delta m_{\rm K}$ and ${\rm Br}({\rm K}_{\rm L} \rightarrow \mu^+ \mu^-) \Rightarrow m_{\rm c}$ Lee&Gaillard (1974) charm discovery Aubert et al., Augustin et al., 1974 (Niu et al. 1971?)
- CP: 1964, J.H. Christenson et al., Br(K⁰_L→π⁺π⁻) ≠ 0
 ⇒ Third family Kobayashi&Maskawa (1973)
- $B^0-\overline{B}^0$ oscillations (Δm_B): ARGUS (1987) $\Rightarrow m_t > 50 \text{ GeV}/c^2$ (NB: UA1 1984 20 $< m_t < 50 \text{ GeV}/c^2$) top discovery by CDF and D0 in 1995 ($m_t = 171.2\pm 2.1 \text{ GeV}/c^2$)
- They were done before the direct discovery of c, b and t quarks
- Establishing the KM phase as the major source of CP violation
- Flavour Physics made crucial contributions to establish the flavour structure of the SM

Flavour physics agreement with SM

All the flavour changing processes are described by the four parameters of the CKM mass mixing matrix (λ, A, ρ, η)

• However from this plot, we know already either new physics energy scale is >> TeV (far beyond LHC) or the flavour structure of new physics is very special.

Evolution of Flavour physics (I)

• Quark flavour physics, has been successfully uncovering physics at much higher scale than directly accessible, e.g. quark family structure and 3rd generation of quark family. Using the quantum fluctuations in the loop diagram

Where are the sign of new physics?

- If one looks closer, there exists hint of discrepancies...
 - "sin 2 β " extracted from CPV in $B_d \rightarrow J/\psi K_S$ somewhat small
 - $|V_{ub}|$ extracted from $B \rightarrow \tau \nu$ decays larger than $|V_{ub}|$ extracted from the semileptonic decays.
- This could be due to
 - 1. Problem with extracting $|V_{ub}/V_{cb}|$ due to the hadronic uncertainties OR
 - 2. New Physics in B⁰- \overline{B}^0 oscillations and charged Higgs in $B \rightarrow \tau \nu$

Where are the sign of new physics?

- For many processes, current experimental limits on new physics are still very large, up to $\sim O(10)$ above the SM values:
 - $B_s \rightarrow \mu^+ \mu^-$
 - CPV in $B_s \rightarrow J/\psi \phi$
 - Lorentz structure in b→s radiative decays, $B^0 \rightarrow K^{*0}\mu^+\mu^-$, CPV in $B \rightarrow \phi\gamma$, etc.
 - CP violation in D system
- Comparison of (ρ, η) determined from the tree processes, i.e. $|V_{ub}|$ and γ (B \rightarrow DK), and (ρ, η) from the loop processes, i.e. $\varepsilon_{\rm K}$, β , $\Delta m_{\rm d}$ and $\Delta m_{\rm s}$.

Swiss thought about B factory in 80's

- Swiss option
 - SIN in 1986 with $L > 5 \times 10^{32}$ cm⁻²s⁻¹ symmetric energy
 - PSI Proposal (1988), $L > 10^{33}$ cm⁻²s⁻¹ modest asymmetric energy option

Was quite a pioneering effort, but no B factory was constructed in Europe

~~		
PR-	-86	·13

Motivation and Design Study for a B-Meson Factory with High Luminosity

R.Eichler¹, T.Nakada², K.R.Schubert³, S.Weseler³, and K.Wille⁴

 Institut f
ür Mittelenergiephysik, ETH Z
ürich c/o SIN, CH-5234 Villigen, Switzerland

- Schweizerisches Institut f
 ür Nuklearforschung (SIN) CH-5234 Villigen, Switzerland
- Institut für Hochenergiephysik, Universität Heidelberg D-6900 Heidelberg, Germany
- Institut für Physik, Universität Dortmund D-4600 Dortmund, Germany

November 24, 1986

Swiss Institute for Nuclear Research

CH-5234 Villigen Switzerland

Hadron colliders also interesting

- Tevatron started in 1988, showed its potential already during Run I, thanks to large $\sigma_{b\bar{b}}^{14}$
- Three EoI's at the Evian workshop 1992 (before the B factory approvals), followed by three LoI's.
- Unified experiment, LHCb approved in 1998.

Quick reminder for LHCb

Very rapid start of the experiment

• As ALICE, ATLAS, and CMS, LHCb was ready for physics right from the first collision in 2010 at $\sqrt{s} = 7$ TeV e.g. $\sigma_{b\bar{b}} \quad B \rightarrow \mu D(\rightarrow K\pi)X$ and $B \rightarrow J/\psi(\rightarrow \mu\mu)X$

• $B_s - \overline{B}_s$ oscillation frequency (Δm_s) measurement - cleanly reconstructed B_s submitted for publication

- $B_s \overline{B}_s$ oscillation frequency (Δm_s) measurement
 - cleanly reconstructed B_s
 - − good momentum and vertex resolutions → decay time resolution $\sigma_t = 44$ fs for D_sπ and 36 fs for D_s3π

- $B_s \overline{B}_s$ oscillation frequency (Δm_s) measurement
 - cleanly reconstructed B_s
 - good momentum and vertex resolutions \rightarrow decay time resolution
 - well calibrated absolute scale of decay time

- $B_s \overline{B}_s$ oscillation frequency (Δm_s) measurement
 - cleanly reconstructed B_s
 - good momentum and vertex resolutions \rightarrow decay time resolution
 - well calibrated absolute scale of decay time
 - efficient and clean initial flavour tag hadron PID of LHCb

- $B_s \overline{B}_s$ oscillation frequency (Δm_s) measurement
 - cleanly reconstructed B_s
 - good momentum and vertex resolutions \rightarrow decay time resolution
 - well calibrated absolute scale of decay time
 - efficient and clean initial flavour tag
 - high statistics

```
submitted for publication
With 2010 data 36 pb<sup>-1</sup>
```

Decay mode (+c.c)	Signal yield
$B_s^0 \rightarrow D_s^-(\phi \pi^-)\pi^+$	515 ± 25
$B_s^0 \rightarrow D_s^-(K^*K^-)\pi^+$	338 ± 27
$B_s^0 \to D_s^- (K^+ K^- \pi^-) \pi^+$	283 ± 27
$B_s^0 \rightarrow D_s^- 3\pi$	245 ± 46
Total	1381 ± 65

- $B_s \overline{B}_s$ oscillation frequency (Δm_s) measurement
 - cleanly reconstructed B_s
 - good momentum and vertex resolutions \rightarrow decay time resolution
 - well calibrated absolute scale of decay time
 - efficient and clean initial flavour tag

submitted for publication $\Delta m_s = 17.63 \pm 0.11 \pm 0.02 \text{ ps}^{-1}$ with full 2010 data 36 pb⁻¹ opposite side tag only

> c.f. CDF $\Delta m_{\rm s} = 17.77 \pm 0.10 \pm 0.07 \text{ ps}^{-1}$ with 1 fb⁻¹ data (PRL 2006)

- $B_s \overline{B}_s$ oscillation frequency (Δm_s) measurement
 - cleanly reconstructed B_s
 - good momentum and vertex resolutions \rightarrow decay time resolution
 - well calibrated absolute scale of decay time
 - efficient and clean initial flavour tag

LHC pp at $\sqrt{s} = 7$ TeV in 2011

- pp run in 2011 finished $\int L dt$: ATLAS/CMS ~5 fb⁻¹ and LHCb ~1fb⁻¹ data
- ATLAS/CMS running at maximum luminosities LHCb running at constant luminosity

LHCb running luminosity 2011

- LHCb has been running beyond the designed performance
 - LHCb designed luminosity: $L = 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ with 25 nsec
 - LHCb actual running luminosity in 2011: $L \approx 3 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ with 50 nsec
 - i.e. 1.5 more peak luminosities with 1/2 the bunch crossing rate
 - 3 times higher number of pp interactions per event
 ⇒ challenge for both trigger and analysis
 more CPU installed for the event filter farm
 designed safety margin of the detector
 LHCb fully exploiting this running condition
 ⇒ good prospect for the upgrade

- CP violation in $B_s \rightarrow J/\psi \phi$ (370 pb⁻¹)
 - opposite side tag only
 - K⁺-K⁻ S-wave contribution included:
 - tagged sample, very good fit behaviour

• CP violation in $B_s \rightarrow J/\psi \phi$ (370 pb⁻¹) submitted for publication $B_s^0 \rightarrow J/\psi \phi$

- CP violation in $B_s \rightarrow J/\psi \phi (370 \text{ pb}^{-1})$
 - $\Gamma_{\rm s} = 0.657 \pm 0.009 \pm 0.008 \text{ ps}^{-1}$ The world best measurement
 - $-\Delta\Gamma_{\rm s} = 0.123 \pm 0.029 \pm 0.011 \text{ ps}^{-1}$ A clear evidence for non-zero $\Delta\Gamma$
 - $φ_s^{J/ψφ} = 0.15 \pm 0.18 \pm 0.06 \text{ rad}$ The world best measurement By combining with the LHCb B_s→J/ψf₀ ⇒ 0.07 ± 0.17 ± 0.06

submitted for publication

- Good agreement with the Standard Model
- $\Delta \Gamma_{\rm s} = 0.096 \pm 0.039 \ {\rm ps}^{-1}$
- $\oint_{s} \frac{J}{\psi \phi} = 0.0366 + 0.0016_{-0.0015} \text{ rad}$ (Lentz and Nierste, Badin et al., Charles et al.)

- $\Delta \Gamma_{\rm s} / \Gamma_{\rm s} = 0.187$
- $\Delta\Gamma_s/\Delta m_s = 0.0069 \pm 0.0017$ constraint for the CPV in $B_s - \overline{B}_s$ oscillations $a_{sl} = \Delta\Gamma/\Delta m$ arctan $(\phi_{\Gamma} - \phi_{M})$ D0 A_{sl} means $\phi_{\Gamma} - \phi_{M} \approx 45^{\circ}$ too big even with new physics

• Muon A_{FS} in $B^0 \rightarrow K^{*0}(K^+\pi^-)\mu^+\mu^-$ (370 pb⁻¹)

• Muon A_{FS} in $B^0 \rightarrow K^{*0}(K^+\pi^-)\mu^+\mu^-$ (370 pb⁻¹)

submitted for publication

• $B_s^0 \rightarrow \mu^+ \mu^-$

CDF results on $B_s \rightarrow \mu^+ \mu^-$

• Interests were generated by CDF results with 7 fb⁻¹ data $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (1.8^{+1.1}_{-0.9}) \times 10^{-8}$ Hypothesis of background fluctuation: p-value of 0.27%

• $B_d \rightarrow K^{*0}\gamma$ and $B_s \rightarrow \phi\gamma$

LHCb Conf-note

• $B_d \rightarrow K^{*0}\gamma$ and $B_s \rightarrow \phi\gamma$

LHCb Conf-note

$$\frac{\mathcal{B}(B^0 \to K^{*0} \gamma)}{\mathcal{B}(B^0_s \to \phi \gamma)} = 1.52 \pm 0.14 \text{(stat)} \pm 0.10 \text{(syst)} \pm 0.12 (f_s/f_d)$$

370 pb⁻¹ World best measurement cf: PDG average 0.7 ± 0.3

Final goal for $B_s \rightarrow \phi \gamma$: to study decay time dependent CP asymmetry

- $B \rightarrow hh$ decays
 - CP violation in the decay amplitudes: $\overline{\mathbf{D}}^0 \rightarrow \mathbf{V}^- = \mathbf{T}$

• $B \rightarrow hh$ decays

LHCb Conf-note

- CP violation in the decay amplitudes: $\overline{B}^0 \rightarrow K^- \pi^+ \text{ vs } B^0 \rightarrow K^+ \pi^-$

• $B \rightarrow hh$ decays

LHCb Conf-note

- CP violation in the decay amplitudes: $\overline{B}^0 \rightarrow K^-\pi^+ \text{ vs } B^0 \rightarrow K^+\pi^-$

	$A_{CP}(B^0 \to K\pi)$
BaBar	$-0.107 \pm 0.016^{+0.006}_{-0.004}$
Belle	$-0.094 \pm 0.018 \pm 0.008$
CLEO	$-0.04 \pm 0.16 \pm 0.02$
CDF	$-0.086 \pm 0.023 \pm 0.009$
HFAG Average	$-0.098^{+0.012}_{-0.011}$

LHCb (preliminary) 370 pb⁻¹ $A_{CP}(B^0 \to K\pi) = -0.088 \pm 0.011 \pm 0.008$

World best measurement

• $B \rightarrow hh$ decays

LHCb Conf-note

- CP violation in the decay amplitudes:

	$A_{CP}(B^0 \to K\pi)$	$A_{CP}(B^0_s \to \pi K)$
BaBar	$-0.107 \pm 0.016^{+0.006}_{-0.004}$	-
Belle	$-0.094 \pm 0.018 \pm 0.008$	-
CLEO	$-0.04 \pm 0.16 \pm 0.02$	-
CDF	$-0.086 \pm 0.023 \pm 0.009$	$0.39 \pm 0.15 \pm 0.08$
HFAG Average	$-0.098^{+0.012}_{-0.011}$	0.39 ± 0.17

LHCb (preliminary) 370 pb⁻¹ $A_{CP}(B^0 \rightarrow K\pi) = -0.088 \pm 0.011 \pm 0.008$ $A_{CP}(B^0_s \rightarrow \pi K) = 0.27 \pm 0.08 \pm 0.02$ World best measurement

May be, B_s CP asymmetry is larger and opposite sign

- $B \rightarrow hh$ decays
 - CP violation in the decay amplitudes: $\overline{B^0} \rightarrow K^-\pi^+ \text{ vs } B^0 \rightarrow K^+\pi^- \qquad \overline{B_s}{}^0 \rightarrow K^+\pi^- \text{ vs } B_s{}^0 \rightarrow K^-\pi^+$
 - W-exchange diagramme $B_d \rightarrow K^+K^ B_s \rightarrow \pi^+\pi^-$

- $B \rightarrow hh$ decays
 - CP violation in the decay amplitudes: $\overline{B^0} \rightarrow K^-\pi^+ \text{ vs } B^0 \rightarrow K^+\pi^- \qquad \overline{B_s}{}^0 \rightarrow K^+\pi^- \text{ vs } B_s{}^0 \rightarrow K^-\pi^+$

LHCb Conf-note

- $B \rightarrow hh$ decays
 - CP violation in the decay amplitudes: $\overline{B^0} \rightarrow K^-\pi^+ \text{ vs } B^0 \rightarrow K^+\pi^- \qquad \overline{B_s}{}^0 \rightarrow K^+\pi^- \text{ vs } \overline{B_s}{}^0 \rightarrow K^-\pi^+$
 - W-exchange diagramme $B_d \rightarrow K^+K^ B_s \rightarrow \pi^+\pi^ \mathcal{BR}(B^0 \rightarrow K^+K^-) = (0.13^{+0.06} \pm 0.07) \times 10^{-6}$

$$\mathcal{BR}(B^0_s \to \pi^+\pi^-) = (0.98^{+0.23}_{-0.19} \pm 0.11) \times 10^{-6}_{\text{cDF}}$$

Measurements with 370 pb⁻¹ cf: CDF measurements: (6 fb⁻¹) $B_d \rightarrow K^+K^- = (0.23 \pm 0.10 \pm 0.10) \times 10^{-6}$ $B_s \rightarrow \pi^+\pi^- = (0.57 \pm 0.15 \pm 0.10) \times 10^{-6}$

LHCb Conf-note

Are the B_d and B_d branching fractions same or not?

• Time integrated CP violation in D \rightarrow K⁺K⁻ and $\rightarrow \pi^{+}\pi^{-}$ Decay time integrated CP asymmetries: A_{CP}^{KK} and $A_{CP}^{\pi\pi}$ $\frac{D^{0}_{initial} \rightarrow f - \overline{D}^{0}_{initial} \rightarrow f}{D^{0}_{initial} \rightarrow f + \overline{D}^{0}_{initial} \rightarrow f}$ and CP asymmetry difference: $\Delta_{CP} = A_{CP}^{KK} - A_{CP}^{\pi\pi}$

KK and $\pi\pi$: tree weak amplitudes are with opposite signs if U-spin symmetry holds, **interference terms have opposite signs**

• Time integrated CP violation in D \rightarrow K⁺K⁻ and $\rightarrow \pi^{+}\pi^{-}$ Decay time integrated CP asymmetries: A_{CP}^{KK} and $A_{CP}^{\pi\pi}$ $\frac{D^{0}_{initial} \rightarrow f - \overline{D}^{0}_{initial} \rightarrow f}{D^{0}_{initial} \rightarrow f + \overline{D}^{0}_{initial} \rightarrow f}$ and CP asymmetry difference: $\Delta_{CP} = A_{CP}^{KK} - A_{CP}^{\pi\pi}$

World average $\Delta_{CP} = -0.0043 \pm 0.0036$ dominated by CDF

• Time integrated CP violation in $D \rightarrow K^+K^-$ and $\rightarrow \pi^+\pi^-$ At LHC, large $\sigma_{c\bar{c}} \approx 6 \text{ mb} \approx 20 \text{ times } \sigma_{b\bar{b}}$ Initial tag: $D^{*+} \rightarrow D^0\pi^+$ and $D^{*-} \rightarrow \overline{D}^0\pi^-$

• Time integrated CP violation in $D \rightarrow K^+K^-$ and $\rightarrow \pi^+\pi^-$

LHCb with 620 pb⁻¹ submitted for publication $\Delta_{CP} = -0.0082 \pm 0.0021 \pm 0.0011 = -0.0082 \pm 0.0024$

- World best measurement
- SM prediction difficult, but expected to be at most $O(10^{-3})$
- Interesting to see how it develops with more statistics
- $A_{\rm CP}^{\rm KK}$ and $A_{\rm CP}^{\pi\pi}$ separately in the future
- Time dependent study in the future
- Other D-D mixing and CPV parameters have been measured, but not the world best yet (2010data, 29 pb⁻¹)). This will change soon! submitted for publication

What I could not show...

- Preparation for the CKM parameter measurements, e.g. γ ; reconstruction of $B_{u, d} \rightarrow DK, B_s \rightarrow D_s K, ...$
- Rare and SM forbidden B and D decays; reconstruction of B, $D \rightarrow e\mu$, $\mu^+\mu^++c.c.$, ...
- Spectroscopy with b-quarks; excited B's, b-baryons, ...
- Exotic states with c (and b in future); X, Y, Z, ...
- PDF and QCD measurements; $d\sigma^2/dydp_T$ for W and Z
- Soft QCD

Conclusions

- At LHC, new physics is now searched both directly and indirectly.
- LHCb is running with a higher luminosity than designed, thank to the flexible trigger.
- LHCb starts to provide the world best measurements in many B and D decays already with ~370 fb⁻¹ of data.
- So far, CP violation and rare decay measurements are in agreement with the Standard Model predictions.
- LHCb collected ~1 fb⁻¹ of data this year. Results expected for the coming conferences.
- Forward acceptance, particle ID, flexible trigger and high data logging rate allow LHCb to perform a wide range of physics programme.

My standard joke of the past years...

My hope, expectation and possible realities matrix for 2014 at LHC

ATLAS CMS high p _T physics	BSM	Only SM	BSM	
LHCb flavour physics	Only SM	BSM	BSM	
Particle Physics	\odot	\odot	\odot	
Oh, no more space left				
Particle Physics in LHC Era, T. Nakada XXVIII Encontro Nacional de Física de Partículas e Campos, Brazil, 2007		e e	62/63	