Electroweak Symmetry Breaking after the first hints of a Higgs

Riccardo Rattazzi
What is the dynamics of Electroweak Symmetry Breaking?

Was the hierarchy problem a good problem?

Is Dark Matter made of weakly interacting thermal relics?

Why is the electron much lighter than the top quark?

Why 3 families?
\[m_{W,Z} \neq 0 \quad \text{3 polarizations} = 2 \perp + 1 \parallel \]

not “pure” gauge int

\[\mathcal{A}(V_L V_L \rightarrow V_L V_L) = \frac{\sqrt{s}}{174 \text{ GeV}}^2 \]

New strong force at 2 TeV!

- EWSB implies new stuff below \(\sim 2 \text{ TeV’s} \)
- Simplest option (or so it seems): just the Higgs boson

\[\frac{m_h^2}{v^2} \]

weak up to ultra-high scale

SM with Higgs boson can be extrapolated virtually to \(E \sim M_{Pl} \)
SM as an effective theory

- beautifully simple
 - it explains
 - B,L approx conservation
 - small neutrino masses
 - nicely accounts for
 - small flavor violation
 - electroweak precision tests
- and it has a beautiful theoretical problem
The hierarchy problem

\[V(H) = \epsilon \Lambda_{UV}^2 H^2 + \lambda H^4 \]

but we need

\[\langle H \rangle = \sqrt{\epsilon} \Lambda_{UV} \]

\[\epsilon \sim 10^{-34} \]

generically

\[\epsilon \sim -O(1) \]

\[\langle H \rangle \sim \Lambda_{UV} \]
same tuning to reach boundary of 2nd order phase transition

How did nature choose to deal with hierarchy problem?
same tuning to reach boundary of 2nd order phase transition

\[\epsilon \sim 10^{-34} \]

How did nature choose to deal with hierarchy problem?

stolen from V. Rychkov
I
Supersymmetry

II
Strong EWSB dynamics (composite Higgs)

III
Large Extra Dimensions

IV
Multiverse (anthropic principle)

$10^{10^0} \ldots$ vacua
of which many have a hierarchy

Expect: just SM + Higgs
+ (possibly weak scale DM)

see NYT Op-Ed
Cardinal Schönborn
The more natural the theory the more the Higgs rates deviate from SM
The more natural the theory the more the Higgs rates deviate from SM.
first probes into EWSB dynamics and into hierarchy puzzle

\[115 \text{ GeV} \lesssim m_h \lesssim 130 \text{ GeV} \]

lucky range to measure all couplings

It would be useful to develop a ‘Higgs diagnostic’: associate the possible patterns of deviation to broad/specific features of the underlying theory
Can use effective lagrangian to describe deviations from SM

= simple parametrization encompassing a large class of models
Can use effective lagrangian to describe deviations from SM

= simple parametrization encompassing a large class of models
I. Strong EWSB dynamics = ‘Composite Higgs’

II. Supersymmetry

III. Anthropic and all that
I. Strong EWSB dynamics = ‘Composite Higgs’

II. Supersymmetry

III. Anthropic and all that
compositeness scale

TeV

New strong

$W_L^\pm, Z_L^0 + \star$

$q, \ell, \gamma, W_T, Z_T, g$

M_{Planck}?
Compositeness scale

TeV

New strong

$W_L^\pm, Z_L^0 + \star$

$q, \ell, \gamma, W_T, Z_T, g$

Technicolor $\text{SO}(4)/\text{SO}(3)$: \(\star = \text{nothing} \)

Not feeling too well

pseudo-NG Higgs $\text{SO}(5)/\text{SO}(4)$: \(\star = h \)

\[W_L^\pm, Z_L^0, h \rightarrow \begin{pmatrix} H^+ \\ H_0 \end{pmatrix} \]

extended cosets $\text{SO}(6)/\text{SO}(5)$, $\text{SO}(6)/\text{SO}(4) \times \text{U}(1)$: additional light scalars

pseudo-dilaton: \(\star = \chi \)

does not fit in $\text{SU}(2)$ doublet
The main advantage of pseudo-NG Higgs

\[S = S_{TC} \times \frac{v^2}{f^2} \]

\[f = \text{Goldstone decay const} \]

EWPT are OK with mild tuning

\[\frac{v^2}{f^2} \sim 0.1 - 0.3 \]

- Compositeness scale \(4\pi f \) still as low as a few TeV
- Sizeable corrections to Higgs couplings: \(O\left(\frac{v^2}{f^2}\right) \)
- Direct signatures
 - Production of resonances
 - Strong WW scattering

Georgi, Kaplan ‘84
Arkani-Hamed, Cohen, Katz, Nelson ‘02
Agashe, Contino, Pomarol ‘04

Tuesday, January 10, 2012
The main advantage of pseudo-NG Higgs

\[S = S_{TC} \times \frac{v^2}{f^2} \]

\[f = \text{Goldstone decay const} \]

EWPT are OK with mild tuning

\[\frac{v^2}{f^2} \sim 0.1 - 0.3 \]

- Compositeness scale \(4\pi f \) still as low as a few TeV
- Sizeable corrections to Higgs couplings: \(O(\frac{v^2}{f^2}) \)
- Direct signatures
 - production of resonances
 - strong WW scattering
General parametrization of \textit{Higgslike scalar }h

\textit{Contino, Grojean, Moretti, Piccinini, RR’10}

\[\mathcal{L} = \frac{1}{2} (\partial_\mu h)^2 + \frac{M_V^2}{2} \text{Tr} (V_\mu V^\mu) \left[1 + 2a \frac{h}{v} + b \frac{h^2}{v^2} + \ldots \right] - m_i \bar{\psi}_{Li} \left(1 + \frac{c h}{v} \right) \psi_{Ri} + \text{h.c.} \]

\[+ \frac{1}{2} m_h^2 h^2 + d_3 \frac{1}{6} \left(\frac{3m_h^2}{v} \right) h^3 + d_4 \frac{1}{24} \left(\frac{3m_h^2}{v^2} \right) h^4 + \ldots \]

\[+ c_g \frac{\alpha_s}{4\pi} \frac{h}{v} G_{\mu\nu} G^{\mu\nu} + c_\gamma \frac{\alpha}{4\pi} \frac{h}{v} F_{\mu\nu} F^{\mu\nu} \]

\textit{C} flavor universal in minimal flavor violating set up

\begin{itemize}
 \item Standard Model: $a = b = c = d_3 = 1$
 \item $c_g = c_\gamma = 0$
 \item h = pseudo-Goldstone implies additional constraints
\end{itemize}
SO(5)/SO(4) Pseudo-Goldstone Higgs

\[a = \sqrt{1 - v^2/f^2} \quad b = 1 - 2v^2/f^2 \]
\[c = d_3 = \sqrt{1 - v^2/f^2} \quad c = d_3 = \frac{1 - 2v^2/f^2}{\sqrt{1 - v^2/f^2}} \]

fermions in 4 \quad fermions in 5

\[{c_g, \ c_\gamma} \sim \frac{\alpha_t}{4\pi}\] controlled by small explicit SO(5) breaking

NEGLIGIBLE!

Interesting inequalities

\[0 \leq a, \ |b| \leq 1 \] robust

\[0 < c < 1 \] in range favored by EWPT
In specific models just one free parameter \[\xi \equiv \frac{v^2}{f^2} \]

In general 4 parameters \[a, c_t, c_b, c_\tau \]

\[\frac{\Gamma(h \to gg)}{\Gamma(h \to gg)|_{SM}} = \frac{\Gamma(h \to tt)}{\Gamma(h \to tt)|_{SM}} = c_t^2 \]

\[\frac{\Gamma(h \to f\bar{f})}{\Gamma(h \to f\bar{f})|_{SM}} = c_f^2 \]

\[\frac{\Gamma(h \to \gamma\gamma)}{\Gamma(h \to \gamma\gamma)|_{SM}} = a^2 \left[1 + 0.28(1 - c_t/a) \right]^2 \sim a^2 \]

\[\frac{\Gamma(h \to VV)}{\Gamma(h \to VV)|_{SM}} = a^2 \]

In the preferred range all rates are reduced
We include now all the search channels for some representative mass points: 120, 130, 160, and 200, as above. Finally, the 125 GeV case should be treated separately.

Again we'd like to have an idea of the difference obtained when using the direct/indirect method of extracting the WW channel data. Below are the plots obtained first using our extrapolation, showing 99% CL exclusions. Following that is the same sort of plot, but with the WW data determined directly (constucting likelihood from wiki).

\[
C_t = C_b = C_\tau \equiv C
\]
We include now all the search channels for some representative mass points: 120, 130, 160, and 200, as above.

Finally, the 125 GeV case should be treated separately.

Again we'd like to have an idea of the difference obtained when using the direct/indirect method of extracting the WW channel data.

Below are the plots obtained first using our extrapolation, showing 99% CL exclusions. Following that is the same sort of plot, but with the WW data determined directly (constructing likelihood from wiki).
Can increase $R_{\gamma\gamma}$, but at the price of R_{bb}
\[\frac{v^2}{f^2} \ll 1 \]

SILH effective lagrangian

\[\mathcal{L}_{\text{eff}} = \frac{c_H}{2f^2} \partial^\mu (H^\dagger H) \partial_\mu (H^\dagger H) + y_f \frac{c_y}{f^2} H^\dagger H \bar{\psi}_L H \psi_R - \frac{c_6 \lambda}{f^2} (H^\dagger H)^3 \]

\[0 \leq a, b, c \leq 1 \quad \quad c_H, c_y > 0 \]

true in larger class including Little Higgs
A dispersion relation for c_H

$$c_H = \frac{f^2}{\pi} \int_0^\infty (\sigma_{+-}(s) - \sigma_{++}(s)) \frac{ds}{s}$$

$H^+ \quad \text{anything} \quad H^+$

$H^- \quad \text{anything} \quad H^+$

c_H not positive definite, but almost so

$\Delta c_H > 0$

$\Delta c_H < 0$

Scalar triplets do not dominate in known models addressing hierarchy
Other roads to increase Higgs couplings

\[
\begin{align*}
 a &= \sqrt{b} = c = \frac{v}{f_D} \\
 d_3 &= \frac{5}{3} \frac{v}{f_D} + O(\epsilon) \\
 c_g, c_\gamma &= O(v/f_D)
\end{align*}
\]

Dilaton

\[
H \in SO(4,1)/SO(4)
\]

Non-Compact coset space

\[
\begin{align*}
 a &= \sqrt{1 + \frac{v^2}{f^2}} \\
 b &= 1 + 2\frac{v^2}{f^2}
\end{align*}
\]

No Unitary QFT as UV completion \(\rightarrow\) TeV scale Quantum Gravity?
m_h, m_t and colored resonances

$y_t \sim \frac{y_L y_R f}{M_T}$

$m_h < 130$ GeV $\quad \rightarrow \quad M_T \approx 1$ TeV $\left(\frac{0.5}{\frac{v}{f}}\right)$
Panico, Wulzer (preliminary)
LHC has already probed part of this plot:

CMS search of B:
\[M_{X_{5/3}} > 490 \]

\[M_{\tilde{T}} \]

\[\xi = 0.2 \]

\[m_H > 130 \]

\[m_H \in [115, 130] \]

Panico, Wulzer (preliminary)
I. Strong EWSB dynamics = ‘Composite Higgs’

II. Supersymmetry

III. Anthropic and all that
Naturalness bound\[\sqrt{\frac{m_{\tilde{t}_L}^2 + m_{\tilde{t}_R}^2}{2}} \lesssim \frac{400 \text{ GeV}}{\sqrt{1 + X^2}} \left(\frac{3}{\ln \frac{\Lambda_{SUSY}}{\text{TeV}}} \right)^{\frac{1}{2}} \left(\frac{0.2}{\epsilon_T} \right)^{\frac{1}{2}} \]

tuning smallest for: small \[X^2 = \frac{A^2}{m_{\tilde{t}_L}^2 + m_{\tilde{t}_R}^2} \] & low \[\Lambda_{SUSY} \]

High scale mediation \[m_{\tilde{t}} \lesssim 100 \text{ GeV} \left(\frac{1}{\epsilon_T} \right)^{\frac{1}{2}} \]
ATLAS

bound on gluinos and squarks of 1st 2nd family

In simplest models $m_{\tilde{t}} \sim m_{\tilde{g}} \sim m_{\tilde{g}}$ it looks like 1% tuning
Squashed spectra slightly less constrained: less tuning

Tuesday, January 10, 2012
Still less constrained with $\sim 1 \text{ fb}^{-1}$

$m_{\tilde{t}_L}, m_{\tilde{t}_R} \gtrsim 250 \text{ GeV}$

Papucci, Ruderman, Weiler ’11
The perspective changes appreciably if one buys the $m_h \sim 125$ GeV hint in MSSM to push up Higgs quartic one needs

- stop masses ≥ 1 TeV
- large A-terms

worst that 1% tuning + problematic for $b \rightarrow s\gamma$

\[A_t/\sqrt{\langle m^2 \rangle} = 2.0, \tan\beta = 10, \mu = 200 \text{ GeV} \]
$$m_h^2 = M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \text{(stop loops)}$$

Hall, Pinner, Ruderman ’11

stop masses < 500 GeV
small A
small $\tan \beta$

$O(10\%)$ tuning + ok for $b \rightarrow s \gamma$
An exercise in Higgs diagnostic

\[H' = -\cos \beta H_2 + \sin \beta H_1 \]
\[H = \cos \beta H_1 + \sin \beta H_2 \]
\[\Delta c_H = 0 \]

dim 8 operator: quick decoupling in $h\gamma\gamma$ and hWW

sign depends on structure of quartic

MSSM \[(H_1^2 - H_2^2)^2 \]
\[c_b > 1 \]
\[c_t < 1 \]

NMSSM \[H_1^2 H_2^2 \]
\[c_b < 1 \]
\[c_t > 1 \]
\[\lambda - \text{SUSY} = \text{NMSSM with } \lambda > 1 \]

cut-off is below GUT scale

\[R_{\gamma\gamma}, R_{ZZ} > 1 \]

\[R_{b\bar{b}} < 1 \]

\[\lambda \text{ dominates the quartic} \]

\[m_{H^+} = 350 \text{ GeV} \]
SM

generic MSSM

natural MSSM

NMSSM

λ-SUSY NMSSM

Technicolor

composite Higgs
perhaps, rather than naturalness, the guidelines should be

A) existence of a complex world (anthropic selection)
B) structure (Ex.: unification, strings)
C) cosmological obs: existence of Dark Matter, baryon asymmetry,...
D) minimality

✦ Split-SUSY (ABCD)

Ex ✦ High-Scale SUSY (ABD)

✦ nuMSM (CD)

Arkani-Hamed, Dimopoulos ’04
Hall, Nomura ’10
Asaka, Blanchet, Shaposhnikov ’05
\(\lambda_h(M_P) \) curiously close to zero in RG extrapolated SM

- Is it just High-Scale SUSY at \(\tan \beta = 1 \)?
- Is the Higgs a pseudo-NG-boson, ... but at the Planck scale?
- Is there a deeper explanation (ex asymptotic safety)?

\text{Giudice, Strumia, '11}

\text{Shaposhnikov, Wetterich '10}

Would we ever know?
Split SUSY

\[10 \text{ TeV} \leq m_{\tilde{f}} \leq 10^4 \text{ TeV} \]

\[\tau_{\tilde{g}} \simeq \left(\frac{\text{TeV}}{m_{\tilde{g}}} \right)^5 \left(\frac{m_{\tilde{f}}}{10^4 \text{ TeV}} \right)^4 \times 10^{-8} s \]

- search for displaced vertices from gluino decays
- compatible with ‘SUSY breaking without singlets’
 simplest anomaly mediated scenario

\[m_{\tilde{f}} \sim m_{3/2} \sim 10^2 \text{ TeV} \]

\[m_{\lambda_i} = \frac{\beta_i(g_i)}{2g_i^2} m_{3/2} \sim \text{ TeV} \]

Giudice, Luty, Murayama, Rattazzi ’98

Tuesday, January 10, 2012
Natural Theory
unNatural Theory
unNatural Theory

- RG extrapolation
- speculation
- move to string theory
Back up slides
$A_t/\sqrt{\langle m^2 \rangle} = 1.0$, $\tan \beta = 10$, $\mu = 200$ GeV

- BR($B \to X_s \gamma$) at 2σ
- 1% FT
- No stops solution
- $m_2 < m_1$