Parton Distributions and Higgs Production at the LHC James Stirling Cambridge University

- •
- introduction: overview and recent developments
- LHC Higgs cross sections and correlations
- summary

Higgs at the LHC, ETH Zürich, January 2012

Introduction: overview and recent developments

parton distribution functions

- introduced by Feynman (1969) in the *parton model*, to explain Bjorken scaling in deep inelastic scattering data; interpretation as probability distributions
- according to the QCD factorisation theorem for inclusive hard scattering processes, universal distributions containing longdistance structure of hadrons; related to parton model distributions at leading order, but with logarithmic scaling violations (DGLAP)

- obtained by fitting a wide variety of high-precision deep inelastic and other hadron collider data ('global PDF fits')
- key ingredients for LHC phenomenology

precision phenomenology at LHC

- Benchmarking \rightarrow precision predictions
 - inclusive SM quantities (V=(γ*,W,Z), jets, top,...), calculated to the highest precision available (e.g. NNLO, NNLL, etc) and compared with exptl. measurements
 - tools needed: robust jet algorithms, kinematics, decays included, PDFs, ...
 - theory uncertainty in predictions:

 $\delta \sigma_{\text{th}} = \delta \sigma_{\text{UHO}} \oplus \delta \sigma_{\text{PDF}} \oplus \delta \sigma_{\text{param}} \oplus \dots$

 such comparisons give confidence in the calculation of SM backgrounds, e.g. {V,VV,bb,tt,H,...} + jets

W cross section measurements

CMS

inclusive jet cross section

• PDF fitting

- LHC can in principle provide complementary (and new?) information on PDFs, particularly from well measured, generally inclusive, Standard Candle cross sections (W,Z,jets,tt,...)
- the process has already started...

W rapidity asymmetry

ubar and d **PDFs**

probing heavy quark pdfs

take advantage of (a) qg dominates W,Z + jet production, (b) heavy quark suppression becomes weaker at high Q², small x, (c) ability to tag c,b jets

CMS: "W production in association with c jets" (CMS-PAS-EWK-11-013)

$$R_c^{\pm} \equiv \sigma(W^+ \bar{c}) / \sigma(W^- c)$$
 and $R_c \equiv \sigma(W + c) / \sigma(W + jets)$

$$\begin{array}{rcl} R_c^{\pm} &=& 0.92 \pm 0.19 \ (stat.) \pm 0.04 \ (syst.) & \longleftarrow & \text{sbar / s} \\ R_c &=& 0.143 \pm 0.015 \ (stat.) \pm 0.024 \ (syst.) & \longleftarrow & \text{sbar + s} \end{array}$$

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ratio	MCFM (CT10)	MCFM (MSTW08)	MCFM (NNPDF21)
R_c 0.125 ^{+0.013} _{-0.007} 0.118 ^{+0.002} _{-0.002} 0.103 ± 0.005	R_c^{\pm}	$0.915^{+0.006}_{-0.006}$	$0.881^{+0.022}_{-0.032}$	0.902 ± 0.008
	R _c	$0.125_{-0.007}^{+0.013}$	$0.118\substack{+0.002\\-0.002}$	0.103 ± 0.005

differences at level of exptl. systematic error!

Also: Z + c as a measure of charm pdf

strange quarks in NNPDF, MSTW, CTEQ

Note:

MSTW: assume u,d,s quarks have same x^{δ} behaviour as $x \rightarrow 0$

parton luminosity functions

 a quick and easy way to assess the mass and collider energy dependence of production cross sections, and to compare different PDF sets

 $\widehat{\sigma}_{ab\to X} = C_X \delta(\widehat{s} - M_X^2)$ $\sigma_X = \int_0^1 dx_a dx_b f_a(x_a, M_X^2) f_b(x_b, M_X^2) C_X \delta(x_a x_b - \tau)$ $\equiv C_X \left[\frac{1}{s} \frac{\partial \mathcal{L}_{ab}}{\partial \tau} \right] \qquad (\tau = M_X^2/s)$ $\frac{\partial \mathcal{L}_{ab}}{\partial \tau} = \int_0^1 dx_a dx_b f_a(x_a, M_X^2) f_b(x_b, M_X^2) \delta(x_a x_b - \tau)$

• i.e. all the mass and energy dependence is contained in the X-independent parton luminosity function in []

- useful combinations are $ab = gg, \sum_q q\bar{q}, \dots$
- and also useful for assessing the uncertainty on cross sections due to uncertainties in the PDFs

CERN-2011-002 17 February 2011

The PDF4LHC Working Group Interim Report

Sergey Alekhin^{1,2}, Simone Alioli¹, Richard D. Ball⁸, Valerio Berxone⁴, Johannes Blümlein¹, Michiel Botje⁵, Jon Butterworth⁶, Francesco Ceruti⁷, Amanda Cooper-Sarkar⁸, Albert de Roeck⁹,
 Luigi Del Debbio³, Joel Felesse¹⁰, Slefano Forte¹¹, Alexander Glazou¹², Albert de Roeck⁹,
 Cowenkan⁸, Joey Huston¹³, Pedro Jimenez-Delgado¹⁴, Hung-Liang Lai¹⁵, Joosé I. Latsorre⁷, Ronan McNulty¹⁶, Pavel Nadolsky¹⁷, Sven Olaf Moch¹, Jon Pumplin¹³, Voica Radescu¹⁸, Juan Rojo¹¹,
 Torbjöm Sjöstrand¹⁹, W.J. Stirling²⁰, Daniel Stamp¹³, Robert S. Thorne⁶, Maria Ubiali²¹, Alessandro Vicini¹¹, Graeme Wata²², C.-P. Yuan¹³
 ² Institute for High Energy Physics, IHEP, Pobeda 1, 142281 Protvino, Russia
 ³ School of Physics and Astronomy, University of Edinburgh, JCMB, KB, Mayfield Rd, Edinburgh EH9 3JZ, Scotland
 ⁴ Physkalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg i. B., Germany

- 5 NIKHEF, Science Park, Amsterdam, The Netherlands
- ⁶ Department of Physics and Astronomy, University College, London, WC1E6BT, UK
- ⁷ Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain
- ⁸ Department of Physics, Oxford University, Denys Wilkinson Bidg, Keble Rd, Oxford, OX1 3RH, UK ⁹ CERN, CH–1211 Genève 23, Switzerland; Antwerp University, B–2610 Wilrijk, Belgium; University of California Davis, CA, USA
- 10 CEA, DSM/IRFU, CE-Saclay, Gif-sur-Yvetee, France
- ¹¹ Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano, Italy
- 12 Deutsches Elektronensynchrotron DESY Notkestraße 85 D-22607 Hamburg, Germany
- 13 Physics and Astronomy Department, Michigan State University, East Lansing, MI 48824, USA
- 14 Institut für Theoretische Physik, Universität Zürich, CH-8057 Zürich, Switzerland
- ¹⁵ Taipei Municipal University of Education, Taipei, Taiwan
- 16 School of Physics, University College Dublin Science Centre North, UCD Belfeld, Dublin 4, Ireland
- ¹⁷ Department of Physics, Southern Methodist University, Dallas, TX 75275-0175, USA
- ¹⁸ Physikalisches Institut, Universität Heidelberg Philosophenweg 12, D-69120 Heidelberg, Germany ¹⁹ Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, S-223 62 Lund. Sweden
- 20 Cavendish Laboratory, University of Cambridge, CB3 OHE, UK
- ²¹ Institut f
 ür Theoretische Teilchenhysik und Kosmologie, RWTH Aachen University, D-52056 Aachen, Germany
- 22 Theory Group, Physics Department, CERN, CH-1211 Geneva 23, Switzerland

arXiv:1101.0593v3 [hep-ph] 20 May 2011

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Handbook of LHC Higgs cross sections:

1. Inclusive observables

Report of the LHC Higgs Cross Section Working Group

Editors: S. Dittmaier C. Mariotti G. Passarino R. Tanaka

GENEVA 2011

benchmark cross sections at 7 TeV from 6 fitting groups

Chapter 8: Parton Distribution Functions (*S. Forte et al.*)

14

See also

and many plots at ...

http://projects.hepforge.org/mstwpdf/pdf4lhc/

recent global or quasi-global PDF fits

PDFs	authors	arXiv
АВКМ	S. Alekhin, J. Blümlein, S. Klein, S. Moch, and others	1105.5349, 1007.3657, 0908.3128, 0908.2766,
CTEQ	HL. Lai, M. Guzzi, J. Huston, Z. Li, P. Nadolsky, J. Pumplin, CP. Yuan, and others	1007.2241, 1004.4624, 0910.4183, 0904.2424, 0802.0007,
GJR	M. Glück, P. Jimenez-Delgado, E. Reya, and others	1006.5890, 0909.1711, 0810.4274,
HERAPDF	H1 and ZEUS collaborations	1012.1438,1006.4471, 0906.1108,
MSTW	A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt	1007.2624, 1006.2753, 0905.3531, 0901.0002,
NNPDF	R. Ball, L. Del Debbio, S. Forte, A. Guffanti, J. Latorre, J. Rojo, M. Ubiali, and others	1108.1758, 1107.2652, 1102.3182, 1101.1300, 1012.0836, 1005.0397, 1002.4407,

2010 (shown at the January 2011 Heavy Quarks meeting)

	MSTW08	CTEQ6.6	NNPDF2.0	HERAPDF1.0	ABKM09	GJR08/JR09
HERA DIS	✓	✓	\checkmark	 Image: A set of the set of the	\checkmark	 Image: A second s
F-T DIS	✓	\checkmark	\checkmark	×	\checkmark	✓
F-T DY	✓	\checkmark	\checkmark	×	\checkmark	 Image: A second s
TEV W,Z	~	✓	\checkmark	×	×	×
TEV jets	>	✓	\checkmark	×	×	√/x
GM-VFNS	\checkmark	\checkmark	×	✓	×	×
NNLO	\checkmark	×	×	×	\checkmark	 ✓

January 2012

	MSTW08	CT10	NNPDF2.1	HERAPDF1.5	ABKM09	GJR08/JR09
HERA DIS	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark
F-T DIS	\checkmark	\checkmark	✓	×	\checkmark	\checkmark
F-T DY	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark
TEV W,Z	\checkmark	\checkmark	✓	×	×	×
TEV jets	\checkmark	✓	✓	×	×	√/≭
GM-VFNS	\checkmark	\checkmark	✓	\checkmark	×	×
NNLO	\checkmark	×	√	 ✓ 	\checkmark	✓

- all available in LHAPDF V5.8.6 (August 2011)

Note:

- not 'true' NNLO fits when collider inclusive jet data are included, since NNLO pQCD corrections not yet known
- all except CTEQ/CT now have publicly available NNLO sets
- PDF groups may also have 'internal' unpublished sets (e.g. CT-NNLO, HERAPDF1.6/7, ABM10, ...)
- convergence and broad agreement (see below), but still differences for example due to
 - choice of data sets (including cuts, corrections and weighting) and treatment of data errors
 - definition of 'PDF uncertainties'
 - treatment of heavy quarks (s,c,b), FFNS, ZM-VFNS, GM-VFNS,
 - treatment of α_{s} (fitted or fixed)
 - parametric form at Q_0
 - (hidden) theoretical assumptions (if any) about flavour symmetries, $x \rightarrow 0, 1$ behaviour, etc.

convergence of pdfs!

plots from Graeme Watt

... although still some differences with ABKM, GJR, HERAPDF

Note:

NPDF2.0 \rightarrow 2.1: ZM-VFNS \rightarrow GM-VFNS (FONLL) \rightarrow larger PDFs at small x CTEQ6.6 \rightarrow CT10: Tevatron Run II jets + extended parametrisation + ... 20

PDFs and $\alpha_{\rm S}({\rm M_Z}^2)$

- MSTW08, ABKM09 and GJR08: $\alpha_{S}(M_{Z}^{2})$ values and uncertainty determined by global fit
- NNLO value about 0.003 0.004 lower than NLO value, e.g. for MSTW08

 $\alpha_S^{\overline{MS},NLO}(M_Z^2) = 0.1202 {+0.012 \atop -0.015}$

 $\alpha_S^{\overline{MS},NNLO}(M_Z^2) = 0.1171 {+0.014 \atop -0.014}$

- CTEQ/CT10, NNPDF, HERAPDF choose standard values and uncertainties
- world average (Bethke 2009)

$$\alpha_S^{\overline{MS}}(M_Z^2) = 0.1184 \pm 0.0007$$

- note that the PDFs and α_s are correlated!
- e.g. gluon α_s anticorrelation at small x and quark – α_s anticorrelation at large x

α_{S} - PDF correlations

comparison of NLO parton luminosity functions at 7 TeV LHC

comparison of NNLO parton luminosity functions at 7 TeV LHC

24

The 'PDF4LHC recommendation'* for combining best fits and uncertainties from different PDF sets into a single prediction

NLO

"For the calculation of uncertainties at the LHC, use the envelope provided by the central values and PDF+ α_s errors from the MSTW08, CTEQ6.6, and NNPDF2.0 PDFs, using each group's prescriptions for combining the two types of errors. We propose this definition of an envelope because the deviations between the predictions can sometimes be as large as their uncertainties. As a central value, use the midpoint of this envelope. We follow the PDF4LHC prescription and recommend that a 68% CL uncertainty envelope be calculated and the α_s variation suggested is consistent with this. Note that the CTEQ6.6 set has uncertainties and α_s variations provided only at 90% CL and thus their uncertainties should be reduced by a factor of 1.645 for 68% CL. Within the quadratic approximation, this procedure is exact."

NNLO

"As a central value, use the MSTW08 prediction. As an uncertainty, take the same percentage uncertainty on this NNLO prediction as found using the NLO uncertainty prescription given above."

2011 update: CTEQ6.6 → CT10, NNPDF2.0 → NNPDF2.1

*S. Forte, J. Huston, K. Mazumdar, R.S. Thorne and A. Vicini, Section 8, in Report of the LHC Higgs Cross Section Working Group, arXiv:1101.0593

- with the exception of HERAPDF1.5, the uncertainties are very similar, in the $\pm 3\text{-}4\%$ range for light M_{H}

- the same but with 90% C.L.

29

PDF + α_s uncertainties: Tevatron *vs.* LHC

recall

- the relatively high upper limit of the HERAPDF1.5 prediction is visible in other SM cross sections

G. Watt (September 2011)

		<mark> </mark>
ATLAS Preliminary		Theory (approx. NNLO)
Data 2010, $\int L = 35 \text{ pb}^{-1}$		m _t = 172.5 GeV
L+jets w/ b-tagging:		
Multivariate		186±10 +21 ±6
Top mass profile fit	<mark></mark>	$-156 \pm 8 + \frac{18}{-16} \pm 5$
Top mass standard fit	, i	$+$ 183 ± 14 $^{+20}_{-18}$ ± 6
Counting	- -	1 156 ± 10 $^{+34}_{-28}$ ± 6
L+jets w/o b-tagging:		
Multivariate		▲ 171±17 + 20 - 17 ± 6
1D lepton η fit	_	
l D ∆η _{max} (I,jet) fit ⊢	<mark></mark>	▲
Counting	• •	
Dilepton:		
Counting	- <mark></mark>	173 ±22 + ¹⁸ + 8 - 16 - 7
Counting w/ b-tagging		▲ +-1 171±22 +21 +7 -16 -6
tī / Z		178±22±20
Inclusive	H	<u>↓</u> 171±22 ±14 ±5
b-tagging fit		176±22±22±6
Combination		<mark></mark>
		(stat)±(syst)±(lumi)
0 50 100	150 σ _{tt}	200 250 300 [pb]

from "Handbook of LHC Higgs cross sections: 1. Inclusive observables"

Table 13: Total inclusive cross section at 7 TeV for WH and ZH production at NNLO QCD + NLO EW. The first error indicates the uncertainty from the renormalization and factorization scale variation, the second from the PDF+ α_s variation.

M _H GeV	σ(WH) pb	Scale [%]	PDF4LHC [%]	$\sigma(ZH) pb $	Scale [%]	PDF4LHC [%]
90	1.640	+0.3 - 0.8	± 3.0	0.8597	+0.9 - 1.0	± 3.0
95	1.392	+0.1 - 0.9	± 3.2	0.7348	+1.0 - 1.1	± 3.6
100	1.186	+0.6 - 0.5	± 3.4	0.6313	+1.1 - 1.2	± 3.4
105	1.018	+0.3 - 0.8	± 3.5	0.5449	+1.3 - 1.6	± 3.7
110	0.8754	+0.3 - 0.7	± 3.8	0.4721	+1.2 - 1.2	± 4.1
115	0.7546	+0.4 - 0.8	± 3.9	0.4107	+1.3 - 1.2	± 4.2
120	0.6561	+0.4 - 0.7	± 3.4	0.3598	+1.5 - 1.2	± 3.5
125	0.5729	+0.2 - 0.8	± 3.5	0.3158	+1.4 - 1.6	± 3.5
130	0.5008	+0.3 - 0.8	± 3.5	0.2778	+1.5 - 1.4	± 3.7
135	0.4390	+0.7 - 0.4	± 3.4	0.2453	+1.7 - 1.4	± 3.6
140	0.3857	+0.5 - 0.5	± 3.5	0.2172	+1.5 - 1.6	± 3.7
145	0.3406	+0.2 - 0.8	± 3.8	0.1930	+1.8 - 1.8	± 4.0
150	0.3001	+0.4 - 0.8	± 3.3	0.1713	+1.8 - 1.6	± 3.6
155	0.2646	+0.5 - 0.8	± 3.5	0.1525	+2.1 - 1.6	± 3.6
160	0.2291	+0.5 - 0.7	± 3.8	0.1334	+2.0 - 1.7	± 4.0
165	0.2107	+0.5 - 0.7	± 3.6	0.1233	+2.1 - 1.7	± 4.1
170	0.1883	+0.5 - 0.7	± 3.8	0.1106	+2.2 - 1.9	± 4.2
175	0.1689	+0.3 - 1.1	± 3.8	0.09950	+2.1 - 1.9	± 4.1
180	0.1521	+0.6 - 0.6	± 3.5	0.08917	+2.2 - 1.9	± 3.8
185	0.1387	+0.4 - 0.9	± 3.5	0.08139	+2.3 - 2.0	± 3.8
190	0.1253	+0.5 - 0.7	± 3.7	0.07366	+2.2 - 2.1	± 3.9
195	0.1138	+0.7 - 0.6	± 3.7	0.06699	+2.3 - 1.9	± 4.0
200	0.1032	+0.4 - 1.0	± 3.8	0.06096	+2.3 - 1.9	± 4.1
210	0.08557	+0.5 - 0.7	± 3.7	0.05068	+2.1 - 2.0	± 4.2
220	0.07142	+0.3 - 0.9	± 3.7	0.04235	+2.2 - 1.9	± 4.2
230	0.06006	+0.7 - 0.7	± 4.5	0.03560	+2.1 - 1.9	± 4.8
240	0.05075	+0.5 - 0.7	± 4.0	0.02999	+1.9 - 1.8	± 4.4
250	0.04308	+0.5 - 0.7	± 4.0	0.02540	+2.0 - 1.6	± 4.2
260	0.03674	+0.8 - 0.7	± 4.0	0.02158	+1.8 - 1.7	± 4.5
270	0.03146	+0.6 - 0.9	± 3.8	0.01839	+1.7 - 1.7	± 4.3
280	0.02700	+0.4 - 1.0	± 4.4	0.01575	+1.6 - 1.3	± 4.9
290	0.02333	+0.7 - 0.8	± 4.2	0.01355	+1.5 - 1.3	± 4.5
300	0.02018	+0.6 - 0.9	± 4.5	0.01169	+1.4 - 1.2	± 5.0

NNLO WH, ZH 7 TeV LHC

correlations between Higgs and other cross sections at 7 TeV LHC

a simple example: $\sigma_{gg \rightarrow H}$ vs. σ_{top}

a more detailed study will appear (this week?) in the second LHC-Higgs working group Yellow Report

Define the degree of correlation: $\rho(X,Y) \equiv \cos \varphi = \frac{\sum_i (X_i - X_0)(Y_i - Y_0)}{\sqrt{\sum_i (X_i - X_0)^2 \sum_i (Y_i - Y_0)^2}}.$ for two (e.g. cross section) quantities *X* and *Y*, using a particular PDF set "0" with its uncertainty sets "*i*":

 ρ = 0, +1(-1) for uncorrelated, completely (anti-)correlated quantities 90% cl MSTW2008 pdf uncertainties on NLO top, (gg \rightarrow) Higgs cross sections at 7 TeV LHC and Tevatron

- sets used: MSTW2008, CT10, GJR08, ABKM09, HERAPDF1.5*, NNPDF2.1*
- four Higgs production mechanisms studied (ggH, VBF, WH, ttH) and many other SM (W, Z, t, b,...) processes
- results presented for the individual PDF sets and for the PDF4LHC average (defined here with CT10, MSTW2008, NNPDF2.1)
- α_S variation can be omitted or included (small changes in most cases)

* requires modified definition of $\,\rho$ because of the way that the uncertainties are defined for these sets

PDF4LHC average correlations Higgs vs. Higgs and Higgs vs. other SM

strong correlation:

tt vs. ggH_{heavy} , ttH_{light} WZ vs. WH tb vs. WH_{light} - same PDFs, similar x

weak correlation:

ttH vs. WH - different PDFs, different -9.2

anticorrelation:

 $W, W\gamma vs. ttH$

- hi/lo x

120 GeV					160
	ggH	VBF	WH	$t\bar{t}H$	
ggH	1	-0.6	-0.2	-0.2	5
VBF	-0.6	1	0.6	-0.4	1
WH	-0.2	0.6	1	-0.2	1
ttH	-0.2	-0.4	-0.2	1	1
W	-0.2	0.6	0.8	-0.6	
WW	-0.4	0.8	1	-0.2	1
WZ	-0.2	0.4	0.8	-0.4	1
$W\gamma$	0	0.6	0.8	-0.6	1
Wbb	-0.2	0.6	1	-0.2	V
tt	0.2	-0.4	-0.4	1	
tb	-0.4	0.6	1	-0.2	
$t(\rightarrow \overline{b})q$	0.4	0	0	0	t(-

	160 GeV				
ł		ggH	VBF	WH	$t\bar{t}H$
2	ggH	1	-0.6	-0.4	0.2
4	VBF	-0.6	1	0.6	-0.2
2	WH	-0.4	0.6	1	0
	ttH	0.2	-0.2	0	1
6	W	-0.4	0.4	0.6	-0.4
2	WW	-0.4	0.6	0.8	-0.2
4	WZ	-0.4	0.4	0.8	-0.2
6	$W\gamma$	-0.4	0.6	0.6	-0.6
2	Wbb	-0.2	0.6	0.8	-0.2
	tt	0.4	-0.4	-0.2	0.8
2	tb	-0.4	0.6	1	0
	$t (\to \overline{b}) q$	0.6	0	0	0

200 GeV					
	ggH	VBF	WH	ttH	Г
ggH	1	-0.6	-0.4	0.4	Г
VBF	-0.6	1	0.6	-0.2	
WH	-0.4	0.6	1	0	
ttH	0.4	-0.2	0	1	
W	-0.6	0.4	0.6	-0.4	
WW	-0.4	0.6	0.8	-0.2	
WZ	-0.4	0.4	0.8	-0.2	
$W\gamma$	-0.4	0.4	0.6	-0.6	
Wbb	-0.2	0.6	0.8	-0.2	
tt	0.6	-0.4	-0.2	0.8	
tb	-0.4	0.6	0.8	0	
$t(\rightarrow \overline{b})q$	0.6	-0.2	0	0	L

	300 GeV				
ttH		ggH	VBF	WH	$t\bar{t}H$
0.4	ggH	1	-0.4	-0.2	0.6
-0.2	VBF	-0.4	1	0.4	-0.2
0	WH	-0.2	0.4	1	0.2
1	ttH	0.6	-0.2	0.2	1
-0.4	W	-0.6	0.4	0.4	-0.6
-0.2	WW	-0.4	0.6	0.8	-0.2
-0.2	WZ	-0.6	0.4	0.6	-0.4
-0.6	$W\gamma$	-0.6	0.4	0.4	-0.6
-0.2	Wbb	-0.2	0.4	0.8	-0.2
0.8	tt	1	-0.4	0	0.8
0	tb	-0.4	0.4	0.8	-0.2
0	$t(\rightarrow \overline{b})q$	0.4	-0.2	0	-0.2

500 GeV				
	ggH	VBF	WH	$t\bar{t}H$
ggH	1	-0.4	0	0.8
VBF	-0.4	1	0.4	-0.2
WH	0	0.4	1	0
$t\bar{t}H$	0.8	-0.2	0	1
W	-0.6	0.4	0.2	-0.6
WW	-0.4	0.6	0.6	-0.4
WZ	-0.6	0.4	0.6	-0.4
$W\gamma$	-0.6	0.4	0.2	-0.6
Wbb	-0.4	0.4	0.6	-0.4
tt	1	-0.4	0	0.8
tb	-0.4	0.4	0.8	-0.2
$t(\rightarrow \overline{b})q$	0.2	-0.2	0	-0.2

0

-1

120 160 200

ww

WZ

300

M_H (GeV)

40

500

summary

- knowledge of PDFs continues to improve
- the 'global fit' sets (MSTW, CT, NNPDF) are becoming more similar; origin of residual differences largely understood
- sets fitted without Tevatron jets (HERAPDF, GJR, ABKM) tend to give smaller high-x gluons \rightarrow visible differences in LHC cross section predictions (e.g. top)
- PDF4LHC Workshops have provided an extremely valuable forum for understanding and comparing PDFs
- PDF dependence of 7 TeV LHC cross sections and correlations has been studied; fitting to LHC data has already begun
- for gg \rightarrow H with M_H~125 GeV, combined PDF+ $\alpha_{\rm S}$ uncertainty is ~ \pm 7%; uncertainty increases with $\dot{M_{H}}$ and is similar for NLO and NNLO
- for qqbar \rightarrow WH,ZH with M_H~125 GeV, combined PDF+ α_{s} uncertainty is ~ ±3.5%, slightly anticorrelated with gg \rightarrow H (ρ = -0.2)

WJS2011

extra slides

7 TeV LHC top cross section predictions

plots from G. Watt

Total top-pair production cross-section

$\sigma_{t\bar{t}}(pb)$	Tevatron	LHC7	LHC10	LHC14
NLO	$6.50^{+0.32+0.33}_{-0.70-0.24}$	150^{+18+8}_{-19-8}	380^{+44+17}_{-46-17}	842^{+97+30}_{-97-32}
NLO+NLL	$6.57^{+0.52+0.33}_{-0.30-0.24}$	151^{+23+8}_{-12-9}	382^{+60+17}_{-32-18}	$848^{+136+30}_{-75-32}$
NLO+NNLL	$6.77^{+0.27+0.35}_{-0.48-0.25}$	155^{+4+8}_{-9-9}	390^{+14+17}_{-26-18}	858^{+35+31}_{-64-33}
$NNLO_{app}(\beta)$	$7.10^{+0.0+0.36}_{-0.26,-0.26}$	162^{+2+9}_{-3-9}	407^{+9+17}_{-5-18}	895^{+24+31}_{-6-33}
$NNLO_{app}(\beta) + NNLL$	$7.13^{+0.22+0.36}_{-0.24-0.26}$	162^{+4+9}_{-1-9}	405^{+14+17}_{-2-18}	892^{+38+31}_{-3-33}
$NNLO_{app}(\beta) + NNLL+BS$	$7.14\substack{+0.14+0.36\\-0.22-0.26}$	162^{+4+9}_{-1-9}	407^{+14+17}_{-2-18}	896^{+38+31}_{-3-33}
$(m_t = 173.1 \text{ GeV}, \tilde{\mu}_f = mt, M)$	(Beneke, Fa	algari, Klein, CS	preliminary)	

- Resummation in momentum space using fixed μ_s from minimising $\Delta \sigma_{\text{soft}}^{\text{NLO}}(\mu_s)$ $\Rightarrow \tilde{\mu}_s = 85/146 \text{ GeV}$ for Tevatron/LHC7: no big scale hierarchy
- vary μ_s , μ_h , μ_f from $0.5\tilde{\mu} < \mu < 2\tilde{\mu}$, add uncertainties in quadrature
- (N)NLL includes (N)LO Coulomb resummation
- BS: include bound-state contributions below threshold
- Preliminary estimate of uncertianty from $\alpha_s^2 C^{(2)}$ terms: $\sim 3\%$

benchmark NLO top cross sections at 7 TeV LHC

	σ (pb)	δσ (pb)	comment
ABKM09	139.55	7.96	combined PDF and α_{s}
CTEQ6.6	156.2	8.06	combined PDF and α_{s} *
GJR08	169	6	PDF only
HERAPDF1.0	147.31	+5.18 -13.76	combined PDF and ${\alpha_s}^{\star\star}$
MSTW08	168.1	+7.2-6.0	combined PDF and ${\alpha_s}^{***}$
NNPDF2.0	169	7	combined PDF and α_{s} ****

 m_{top} = 171.3 GeV* zero width approximation, no branching ratios 68% cl uncertainties scales $\mu_F = \mu_R = m_{top}$ * ±6.63 (PDF) ±4.59 (α_s) ** expt.+model+param.+ α_s , see report for details *** +4.7-5.6 (PDF) +3.8-4.6 (α_s) **** ±6 (PDF) ±4 (α_s)

<u>Note</u>: $\delta \sigma_{top}$ (pb) \approx -5 δm_{top} (GeV)

*PDG2011 value is 172.9±0.6±0.9 GeV

PDF4LHC Working Group Interim Report, arXiv:1101.0536 (January 2011)

PDF + α_{s} uncertainties in jet cross sections

A benchmarking exercise was carried out to which all PDF groups were invited to participate. This exercise considered only the-then most up to date published versions/most commonly used of NLO PDFs from 6 groups: ABKM09 [2], [3], CTEQ6.6 [4], GJR08 [7], HERAPDF1.0 [8], MSTW08 [9], NNPDF2.0 [10]. The benchmark cross sections were evaluated at NLO at both 7 and 14 TeV. We report here primarily on the 7 TeV results.

All of the benchmark processes were to be calculated with the following settings:

- 1. at NLO in the \overline{MS} scheme
- all calculation done in a the 5-flavor quark ZM-VFNS scheme, though each group uses a different treatment of heavy quarks
- 3. at a center-of-mass energy of 7 TeV
- 4. for the central value predictions, and for $\pm 68\%$ and $\pm 90\%$ c.l. PDF uncertainties
- 5. with and without the α_s uncertainties, with the prescription for combining the PDF and α_s errors to be specified
- 6. repeating the calculation with a central value of $\alpha_s(m_Z)$ of 0.119.

To provide some standardization, a gzipped version of MCFM5.7 [25] was prepared by John Campbell, using the specified parameters and exact input files for each process. It was allowable for other codes to be used, but they had to be checked against the MCFM output values.

includes ttbar total production cross section with:

 m_{top} = 171.3 GeV zero width approximation, no branching ratios scales $\mu_F = \mu_R = m_{top}$

data sets used in MSTW fit

Data set	$N_{\rm pts.}$	Data ast	<u> </u>
H1 MB 99 e^+p NC	8	Data set	N _{pts.}
H1 MB 97 e^+p NC	64	BCDMS $\mu p F_2$	163
$H1 \log Q^2 06 07 c^+ m NC$	04	BCDMS $\mu d F_2$	151
HI IOW Q ² 90–97 e^{-p} NC	106	NMC $\mu p F_2$	123
HI high Q^2 98–99 e p NC	120	NMC $\mu d F_2$	123
H1 high Q^2 99–00 e^+p NC	147	NMC $\mu n/\mu p$	148
ZEUS SVX 95 e ⁺ p NC	30	E665 $\mu p F_2$	53
ZEUS 96–97 e ⁺ p NC	144	$E_{665} \mu d E_{2}$	53
ZEUS 98–99 <i>e⁻p</i> NC	92	SLAC en Fo	37
ZEUS 99–00 e ⁺ p NC	90	SLAC ed Fo	38
H1 99–00 e ⁺ p CC	28		21
ZEUS 99-00 e ⁺ p CC	30	E866 /NuSee pp DV	10/
H1/ZEUS $e^{\pm}p$ F_{c}^{charm}	83	$E_{000}/NuSea pp DT$	104
H1 99–00 e^+p incluiets	24	E800/INUSea pd/pp DY	15
$7EUS 96-97 e^+ n$ incluiets	30	NuleV $\nu N F_2$	53
$ZEUS 90 97 e^{-p}$ incl. jets	30	CHORUS $\nu N F_2$	42
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$	110	NuTeV $\nu N x F_3$	45
DØ II <i>pp</i> Inci. Jets	110	CHORUS $\nu N \times F_3$	33
CDF II pp incl. jets	/6	$CCFR \ \nu N \to \mu \mu X$	86
CDF II $W \rightarrow l\nu$ asym.	22	NuTeV $\nu N \rightarrow \mu \mu X$	84
DØ II $W ightarrow l u$ asym.	10		27/2
DØ II Z rap.	28	All data sets	2143
CDF II Z rap.	29	Red = New w.r.t. MR	ST 2006 fit

MSTW input parametrisation

At input scale $Q_0^2 = 1$ GeV²:

$$\begin{aligned} xu_{v} &= A_{u} x^{\eta_{1}} (1-x)^{\eta_{2}} (1+\epsilon_{u} \sqrt{x} + \gamma_{u} x) \\ xd_{v} &= A_{d} x^{\eta_{3}} (1-x)^{\eta_{4}} (1+\epsilon_{d} \sqrt{x} + \gamma_{d} x) \\ xS &= A_{S} x^{\delta_{S}} (1-x)^{\eta_{S}} (1+\epsilon_{S} \sqrt{x} + \gamma_{S} x) \\ x\bar{d} - x\bar{u} &= A_{\Delta} x^{\eta_{\Delta}} (1-x)^{\eta_{S}+2} (1+\gamma_{\Delta} x + \delta_{\Delta} x^{2}) \\ xg &= A_{g} x^{\delta_{g}} (1-x)^{\eta_{g}} (1+\epsilon_{g} \sqrt{x} + \gamma_{g} x) + A_{g'} x^{\delta_{g'}} (1-x)^{\eta_{g'}} \\ xs + x\bar{s} &= A_{+} x^{\delta_{S}} (1-x)^{\eta_{+}} (1+\epsilon_{S} \sqrt{x} + \gamma_{S} x) \\ xs - x\bar{s} &= A_{-} x^{\delta_{-}} (1-x)^{\eta_{-}} (1-x/x_{0}) \end{aligned}$$

<u>Note:</u> 20 parameters allowed to go free for eigenvector PDF sets, *cf.* 15 for MRST sets

which data sets determine which partons?

Process	Subprocess	Partons	x range
$\ell^{\pm}\left\{p,n\right\} \to \ell^{\pm} X$	$\gamma^* q \to q$	q, ar q, g	$x \gtrsim 0.01$
$\ell^{\pm} n/p \to \ell^{\pm} X$	$\gamma^* d/u o d/u$	d/u	$x \gtrsim 0.01$
$pp \to \mu^+ \mu^- X$	$u ar{u}, d ar{d} ightarrow \gamma^*$	$ar{q}$	$0.015 \lesssim x \lesssim 0.35$
$pn/pp \rightarrow \mu^+\mu^- X$	$(u\bar{d})/(u\bar{u}) \rightarrow \gamma^*$	$ar{d}/ar{u}$	$0.015 \lesssim x \lesssim 0.35$
$ u(\bar{\nu}) N \to \mu^-(\mu^+) X$	$W^*q \to q'$	q, ar q	$0.01 \lesssim x \lesssim 0.5$
$\nu N \to \mu^- \mu^+ X$	$W^*s \to c$	s	$0.01 \lesssim x \lesssim 0.2$
$\bar{\nu} N \to \mu^+ \mu^- X$	$W^*\bar{s} \to \bar{c}$	\bar{s}	$0.01 \lesssim x \lesssim 0.2$
$e^{\pm} p \to e^{\pm} X$	$\gamma^* q \to q$	$g,q,ar{q}$	$0.0001 \lesssim x \lesssim 0.1$
$e^+ p \to \bar{\nu} X$	$W^+\left\{d,s\right\} \to \left\{u,c\right\}$	d,s	$x \gtrsim 0.01$
$e^{\pm}p \to e^{\pm} c \bar{c} X$	$\gamma^* c \to c, \ \gamma^* g \to c \bar{c}$	c, g	$0.0001 \lesssim x \lesssim 0.01$
$e^{\pm}p \to \text{jet} + X$	$\gamma^*g \to q\bar{q}$	g	$0.01 \lesssim x \lesssim 0.1$
$p\bar{p} \rightarrow \text{jet} + X$	$gg, qg, qq \rightarrow 2j$	g,q	$0.01 \lesssim x \lesssim 0.5$
$p\bar{p} \to (W^{\pm} \to \ell^{\pm}\nu) X$	$ud \to W, \bar{u}\bar{d} \to W$	$u,d,ar{u},ar{d}$	$x \gtrsim 0.05$
$p\bar{p} \to (Z \to \ell^+ \ell^-) X$	$uu, dd \rightarrow Z$	d	$x \gtrsim 0.05$

MSTW 2008

LO vs NLO vs NNLO?

in the MSTW 2008 fit

 χ^2_{global} /dof = 3066/2598 (LO) 2543/2699 (NLO) 2480/2615 (NNLO)

LO evolution too slow at small x; NNLO fit marginally better than NLO

Note:

• an important ingredient missing in the full NNLO global PDF fit is the NNLO correction to the Tevatron high E_T jet cross section

• LO can be improved (e.g. LO*) for MCs by adding K-factors, relaxing momentum conservation, etc.